scispace - formally typeset
Search or ask a question
Journal ArticleDOI

RSSI-Based Indoor Localization With the Internet of Things

04 Jun 2018-IEEE Access (IEEE)-Vol. 6, pp 30149-30161
TL;DR: Four wireless technologies for indoor localization: Wi-Fi (IEEE 802.11n-2009 at the 2.4 GHz band), Bluetooth low energy, Zigbee, and long-range wide-area network are compared in terms of localization accuracy and power consumption when IoT devices are used.
Abstract: In the era of smart cities, there are a plethora of applications where the localization of indoor environments is important, from monitoring and tracking in smart buildings to proximity marketing and advertising in shopping malls. The success of these applications is based on the development of a cost-efficient and robust real-time system capable of accurately localizing objects. In most outdoor localization systems, global positioning system (GPS) is used due to its ease of implementation and accuracy up to five meters. However, due to the limited space that comes with performing localization of indoor environments and the large number of obstacles found indoors, GPS is not a suitable option. Hence, accurately and efficiently locating objects is a major challenge in indoor environments. Recent advancements in the Internet of Things (IoT) along with novel wireless technologies can alleviate the problem. Small-size and cost-efficient IoT devices which use wireless protocols can provide an attractive solution. In this paper, we compare four wireless technologies for indoor localization: Wi-Fi (IEEE 802.11n-2009 at the 2.4 GHz band), Bluetooth low energy, Zigbee, and long-range wide-area network. These technologies are compared in terms of localization accuracy and power consumption when IoT devices are used. The received signal strength indicator (RSSI) values from each modality were used and trilateration was performed for localization. The RSSI data set is available online. The experimental results can be used as an indicator in the selection of a wireless technology for an indoor localization system following application requirements.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a mobile application is developed along with three Bayesian filtering techniques to improve the BLE beacon proximity estimation accuracy, including a Kalman filter, a particle filter, and a nonparametric information (NI) filter.
Abstract: The interconnectedness of all things is continuously expanding which has allowed every individual to increase their level of interaction with their surroundings. Internet of Things (IoT) devices are used in a plethora of context-aware application, such as proximity-based services (PBSs), and location-based services (LBSs). For these systems to perform, it is essential to have reliable hardware and predict a user’s position in the area with high accuracy in order to differentiate between individuals in a small area. A variety of wireless solutions that utilize received signal strength indicators (RSSIs) have been proposed to provide PBS and LBS for indoor environments, though each solution presents its own drawbacks. In this article, Bluetooth low energy (BLE) beacons are examined in terms of their accuracy in proximity estimation. Specifically, a mobile application is developed along with three Bayesian filtering techniques to improve the BLE beacon proximity estimation accuracy. This includes a Kalman filter, a particle filter, and a nonparametric information (NI) filter. Since the RSSI is heavily influenced by the environment, experiments were conducted to examine the performance of beacons from three popular vendors in two different environments. The error is compared in terms of mean absolute error (MAE) and root mean squared error (RMSE). According to the experimental results, Bayesian filters can improve proximity estimation accuracy up to 30% in comparison with traditional filtering, when the beacon and the receiver are within 3 m.

56 citations

Journal ArticleDOI
23 Sep 2020
TL;DR: This paper provides a comprehensive survey of user location-tracking, proximity-detection, and digital contact-tracing solutions in the literature from the past two decades, analyses their advantages and drawbacks concerning centralized and decentralized solutions, and presents the authors’ thoughts on future research directions.
Abstract: Some of the recent developments in data science for worldwide disease control have involved research of large-scale feasibility and usefulness of digital contact tracing, user location tracking, and proximity detection on users’ mobile devices or wearables. A centralized solution relying on collecting and storing user traces and location information on a central server can provide more accurate and timely actions than a decentralized solution in combating viral outbreaks, such as COVID-19. However, centralized solutions are more prone to privacy breaches and privacy attacks by malevolent third parties than decentralized solutions, storing the information in a distributed manner among wireless networks. Thus, it is of timely relevance to identify and summarize the existing privacy-preserving solutions, focusing on decentralized methods, and analyzing them in the context of mobile device-based localization and tracking, contact tracing, and proximity detection. Wearables and other mobile Internet of Things devices are of particular interest in our study, as not only privacy, but also energy-efficiency, targets are becoming more and more critical to the end-users. This paper provides a comprehensive survey of user location-tracking, proximity-detection, and digital contact-tracing solutions in the literature from the past two decades, analyses their advantages and drawbacks concerning centralized and decentralized solutions, and presents the authors’ thoughts on future research directions in this timely research field.

52 citations


Cites background from "RSSI-Based Indoor Localization With..."

  • ...Location tracking is a domain with many potential implementation/application areas, and contact tracing based on user location is only one area [56,57]....

    [...]

Journal ArticleDOI
29 Jul 2019-Sensors
TL;DR: A comprehensive survey of recent advances in the CSI-based sensing mechanism is presented and illustrates the drawbacks, discusses challenges, and presents some suggestions for the future of device-free sensing technology.
Abstract: Human motion detection and activity recognition are becoming vital for the applications in smart homes. Traditional Human Activity Recognition (HAR) mechanisms use special devices to track human motions, such as cameras (vision-based) and various types of sensors (sensor-based). These mechanisms are applied in different applications, such as home security, Human–Computer Interaction (HCI), gaming, and healthcare. However, traditional HAR methods require heavy installation, and can only work under strict conditions. Recently, wireless signals have been utilized to track human motion and HAR in indoor environments. The motion of an object in the test environment causes fluctuations and changes in the Wi-Fi signal reflections at the receiver, which result in variations in received signals. These fluctuations can be used to track object (i.e., a human) motion in indoor environments. This phenomenon can be improved and leveraged in the future to improve the internet of things (IoT) and smart home devices. The main Wi-Fi sensing methods can be broadly categorized as Received Signal Strength Indicator (RSSI), Wi-Fi radar (by using Software Defined Radio (SDR)) and Channel State Information (CSI). CSI and RSSI can be considered as device-free mechanisms because they do not require cumbersome installation, whereas the Wi-Fi radar mechanism requires special devices (i.e., Universal Software Radio Peripheral (USRP)). Recent studies demonstrate that CSI outperforms RSSI in sensing accuracy due to its stability and rich information. This paper presents a comprehensive survey of recent advances in the CSI-based sensing mechanism and illustrates the drawbacks, discusses challenges, and presents some suggestions for the future of device-free sensing technology.

49 citations


Cites background from "RSSI-Based Indoor Localization With..."

  • ...In [92], a comparison between RSSI of Bluetooth low energy (BLE), Wi-Fi, long-range wide area network, and Zigbee have been implemented....

    [...]

Journal ArticleDOI
26 Jul 2019-Sensors
TL;DR: The use of a LoRaWAN fog computing-based architecture is proposed for providing connectivity to IoT nodes deployed in a campus of the University of A Coruña (UDC), Spain, and the accurate results obtained by the planning simulator in the largest scenario ever built for it are presented.
Abstract: A smart campus is an intelligent infrastructure where smart sensors and actuators collaborate to collect information and interact with the machines, tools, and users of a university campus. As in a smart city, a smart campus represents a challenging scenario for Internet of Things (IoT) networks, especially in terms of cost, coverage, availability, latency, power consumption, and scalability. The technologies employed so far to cope with such a scenario are not yet able to manage simultaneously all the previously mentioned demanding requirements. Nevertheless, recent paradigms such as fog computing, which extends cloud computing to the edge of a network, make possible low-latency and location-aware IoT applications. Moreover, technologies such as Low-Power Wide-Area Networks (LPWANs) have emerged as a promising solution to provide low-cost and low-power consumption connectivity to nodes spread throughout a wide area. Specifically, the Long-Range Wide-Area Network (LoRaWAN) standard is one of the most recent developments, receiving attention both from industry and academia. In this article, the use of a LoRaWAN fog computing-based architecture is proposed for providing connectivity to IoT nodes deployed in a campus of the University of A Coruna (UDC), Spain. To validate the proposed system, the smart campus has been recreated realistically through an in-house developed 3D Ray-Launching radio-planning simulator that is able to take into consideration even small details, such as traffic lights, vehicles, people, buildings, urban furniture, or vegetation. The developed tool can provide accurate radio propagation estimations within the smart campus scenario in terms of coverage, capacity, and energy efficiency of the network. The results obtained with the planning simulator can then be compared with empirical measurements to assess the operating conditions and the system accuracy. Specifically, this article presents experiments that show the accurate results obtained by the planning simulator in the largest scenario ever built for it (a campus that covers an area of 26,000 m 2 ), which are corroborated with empirical measurements. Then, how the tool can be used to design the deployment of LoRaWAN infrastructure for three smart campus outdoor applications is explained: a mobility pattern detection system, a smart irrigation solution, and a smart traffic-monitoring deployment. Consequently, the presented results provide guidelines to smart campus designers and developers, and for easing LoRaWAN network deployment and research in other smart campuses and large environments such as smart cities.

48 citations


Cites background from "RSSI-Based Indoor Localization With..."

  • ...Smart Campus Area Access Technology Sensors and Actuators IoT Hardware Platform Software Platform Use Cases Fog Computing Capabilities Network Planning Sustainable Development Goals (SDGs) [107], KPIs or Results [52] - MESH Wi-Fi Environmental sensors, IP cameras, emergency buttons - Neural network learning algorithms Street lighting Edge Computing No Workload prediction accuracy, resource management dashboard WiCloud [53] - Wi-Fi - Servers, mobile phone base stations or wireless access points Network Functions Virtualization (NFV), Software-Defined Network (SDN) Semantic information analysis, smart class Mobile Edge Computing paradigm No Historical data WiP [54] - 3G/4G/5G,Wi-Fi Smartcam, smart cards, light and temperature sensor, smartphone, tablet, smartwatch - - Energy consumption savings, virtual support to students, augmented reality for museum collections Yes No - Smart CEI Moncloa, Universidad Politécnica de Madrid (Spain) [56] 5.5 km2, 144 buildings, daily flow up to 120,000 people Wi-Fi, Ethernet Smart Citizen Kit (SCK) Raspberry Pi, Arduino Cloud, SOA paradigm Smart emergency management and traffic restriction No No Dashboard withhistorical data Table 2....

    [...]

  • ...Smart Campus Area Access Technology Sensors and Actuators IoT Hardware Platform Software Platform Use Cases Fog Computing Capabilities Network Planning Sustainable Development Goals (SDGs) [107], KPIs or Results Wisdom Campus, Soochow University (China) [71] 4058 acres (16.42 km2), 5263 staff and more than 50,000 people - - - - Automatic vehicle access systems, parking guidance service, bus tracking system and bicycle rental service No No - IISc campus [82] 2 km × 1 km sub-GHz radios Low-cost ultrasonic water level sensors, solar panels Microcontroller TI MSP432P401R - Watermanagement No No RSSI and Packet Error Rate (PER) performance, power budget Ottawa City and APEC campus [104] - Wi-Fi - - - -...

    [...]

  • ...The purple dots depicted in Figure 9 represent the location of SBC-type devices (e.g., Raspberry Pi) that act as Bluetooth and Wi-Fi sniffers that will help to determine the mobility patterns of the users that move throughout the campus, what will optimize the deployed location-based services....

    [...]

  • ...Similarly, in [104], the radio-planning analysis of a Wi-Fi network in a university campus is presented using an RT approach....

    [...]

  • ...Wi-Fi has also been suggested for providing connectivity [56], although the proposed applications are usually restricted to indoor locations and nearby places....

    [...]

Journal ArticleDOI
TL;DR: An AP selection algorithm based on multiobjective optimization is proposed to improve indoor WiFi positioning accuracy and is at least a few decimeters better than classical algorithms in terms of RMSE of position estimation.
Abstract: With the widely deployed wireless access points (APs) and the worldwide popularization of smartphones, WiFi-based indoor positioning has attracted great attention to both industry and academia. Locating and tracking objects within an indoor environment plays an important role in Internet of Things application and service. However, it is a challenging problem to achieve high accuracy using WiFi positioning technique due to the high instability in received signal strength from AP. Thus, it is desirable to select APs by considering both signal strength and connection quality. In this article, an AP selection algorithm based on multiobjective optimization is proposed to improve indoor WiFi positioning accuracy. The self-adaptive AP selection algorithm can be easily applied to various real scenarios and the performance of the new method is considerably better than classical algorithms. Learning algorithm is exploited to obtain the optimal solution for the self-adaptive AP selection algorithm. Experiments are conducted and the proposed algorithm is compared with classical algorithms. The experimental results demonstrate that the performance of the self-adaptive AP selection algorithm is at least a few decimeters better than classical algorithms in terms of RMSE of position estimation. Meanwhile, the new method is robust to the random generation of initial particles and normalizing factor as their effect on the positional accuracy is less than 1 decimeter.

39 citations

References
More filters
Journal ArticleDOI
TL;DR: This paper will present and discuss the technical solutions and best-practice guidelines adopted in the Padova Smart City project, a proof-of-concept deployment of an IoT island in the city of Padova, Italy, performed in collaboration with the city municipality.
Abstract: The Internet of Things (IoT) shall be able to incorporate transparently and seamlessly a large number of different and heterogeneous end systems, while providing open access to selected subsets of data for the development of a plethora of digital services. Building a general architecture for the IoT is hence a very complex task, mainly because of the extremely large variety of devices, link layer technologies, and services that may be involved in such a system. In this paper, we focus specifically to an urban IoT system that, while still being quite a broad category, are characterized by their specific application domain. Urban IoTs, in fact, are designed to support the Smart City vision, which aims at exploiting the most advanced communication technologies to support added-value services for the administration of the city and for the citizens. This paper hence provides a comprehensive survey of the enabling technologies, protocols, and architecture for an urban IoT. Furthermore, the paper will present and discuss the technical solutions and best-practice guidelines adopted in the Padova Smart City project, a proof-of-concept deployment of an IoT island in the city of Padova, Italy, performed in collaboration with the city municipality.

4,335 citations


"RSSI-Based Indoor Localization With..." refers background in this paper

  • ...These devices are capable of communicating with the IoT to allow for smart buildings to poses a greater amount of control that could never have been achieved before [1], [2]....

    [...]

Journal ArticleDOI
01 Nov 2007
TL;DR: Comprehensive performance comparisons including accuracy, precision, complexity, scalability, robustness, and cost are presented.
Abstract: Wireless indoor positioning systems have become very popular in recent years. These systems have been successfully used in many applications such as asset tracking and inventory management. This paper provides an overview of the existing wireless indoor positioning solutions and attempts to classify different techniques and systems. Three typical location estimation schemes of triangulation, scene analysis, and proximity are analyzed. We also discuss location fingerprinting in detail since it is used in most current system or solutions. We then examine a set of properties by which location systems are evaluated, and apply this evaluation method to survey a number of existing systems. Comprehensive performance comparisons including accuracy, precision, complexity, scalability, robustness, and cost are presented.

4,123 citations


"RSSI-Based Indoor Localization With..." refers background or methods in this paper

  • ...AoA systems use an array of antennae to determine the angle, from which the signal propagated [8], [19], [20]....

    [...]

  • ...The most common technologies are: WiFi, Bluetooth, Radio Frequency Identification (RFID), Ultra-Wide Band (UWB) and cellular [8]....

    [...]

  • ...So far, a standard model for indoor localization has not been developed due to obstacles, floor layouts, and reflections of signals that can occur [8]....

    [...]

  • ...other methods need to be used in order to determine a device’s location [8]–[10]....

    [...]

  • ...For instance, there are many more obstacles indoors, including furniture, walls, and people, which can reflect the signals produced, increasing multipath effects [7], [8], [15]....

    [...]

Journal ArticleDOI
TL;DR: The authors introduce a hierarchy of architectures with increasing levels of real-world awareness and interactivity for smart objects, describing activity-, policy-, and process-aware smart objects and demonstrating how the respective architectural abstractions support increasingly complex application.
Abstract: The combination of the Internet and emerging technologies such as nearfield communications, real-time localization, and embedded sensors lets us transform everyday objects into smart objects that can understand and react to their environment. Such objects are building blocks for the Internet of Things and enable novel computing applications. As a step toward design and architectural principles for smart objects, the authors introduce a hierarchy of architectures with increasing levels of real-world awareness and interactivity. In particular, they describe activity-, policy-, and process-aware smart objects and demonstrate how the respective architectural abstractions support increasingly complex application.

1,459 citations


"RSSI-Based Indoor Localization With..." refers background in this paper

  • ...These devices are capable of communicating with the IoT to allow for smart buildings to poses a greater amount of control that could never have been achieved before [1], [2]....

    [...]

Journal ArticleDOI
TL;DR: This paper aims to provide a detailed survey of different indoor localization techniques, such as angle of arrival (AoA), time of flight (ToF), return time ofFlight (RTOF), and received signal strength (RSS) based on technologies that have been proposed in the literature.
Abstract: Indoor localization has recently witnessed an increase in interest, due to the potential wide range of services it can provide by leveraging Internet of Things (IoT), and ubiquitous connectivity. Different techniques, wireless technologies and mechanisms have been proposed in the literature to provide indoor localization services in order to improve the services provided to the users. However, there is a lack of an up-to-date survey paper that incorporates some of the recently proposed accurate and reliable localization systems. In this paper, we aim to provide a detailed survey of different indoor localization techniques, such as angle of arrival (AoA), time of flight (ToF), return time of flight (RTOF), and received signal strength (RSS); based on technologies, such as WiFi, radio frequency identification device (RFID), ultra wideband (UWB), Bluetooth, and systems that have been proposed in the literature. This paper primarily discusses localization and positioning of human users and their devices. We highlight the strengths of the existing systems proposed in the literature. In contrast with the existing surveys, we also evaluate different systems from the perspective of energy efficiency, availability, cost, reception range, latency, scalability, and tracking accuracy. Rather than comparing the technologies or techniques, we compare the localization systems and summarize their working principle. We also discuss remaining challenges to accurate indoor localization.

1,447 citations


"RSSI-Based Indoor Localization With..." refers background in this paper

  • ...to ToA in that it requires devices to have synchronized clocks, but it uses the signal propagation time to multiple receivers to find the absolute signal propagation time [20]....

    [...]

  • ...AoA systems use an array of antennae to determine the angle, from which the signal propagated [8], [19], [20]....

    [...]

  • ...Through the use of synchronized clocks, the signal propagation time between the transmitter and receiver can be determined [19], [20]....

    [...]

Journal ArticleDOI
TL;DR: This work provides a detailed study of BLE fingerprinting using 19 beacons distributed around a ~600 m2 testbed to position a consumer device, and investigates the choice of key parameters in a BLE positioning system, including beacon density, transmit power, and transmit frequency.
Abstract: The complexity of indoor radio propagation has resulted in location-awareness being derived from empirical fingerprinting techniques, where positioning is performed via a previously-constructed radio map, usually of WiFi signals. The recent introduction of the Bluetooth Low Energy (BLE) radio protocol provides new opportunities for indoor location. It supports portable battery-powered beacons that can be easily distributed at low cost, giving it distinct advantages over WiFi. However, its differing use of the radio band brings new challenges too. In this work, we provide a detailed study of BLE fingerprinting using 19 beacons distributed around a $\sim\! 600\ \mbox{m}^2$ testbed to position a consumer device. We demonstrate the high susceptibility of BLE to fast fading, show how to mitigate this, and quantify the true power cost of continuous BLE scanning. We further investigate the choice of key parameters in a BLE positioning system, including beacon density, transmit power, and transmit frequency. We also provide quantitative comparison with WiFi fingerprinting. Our results show advantages to the use of BLE beacons for positioning. For one-shot (push-to-fix) positioning we achieve $30\ \mbox{m}^2$ ), compared to $100\ \mbox{m}^2$ ) and < 8.5 m for an established WiFi network in the same area.

736 citations


"RSSI-Based Indoor Localization With..." refers background in this paper

  • ...With the recent emergence of BLE and beacons, it has becomemore feasible to place inexpensive beacons around an environment than it is to rearrange existing hardware and use that for localization [17], [18]....

    [...]