scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Safety of Novel Protein Sources (Insects, Microalgae, Seaweed, Duckweed, and Rapeseed) and Legislative Aspects for Their Application in Food and Feed Production

TL;DR: The aim of this article is to review the state of the art on the safety of major novel protein sources for feed and food production, in particular insects, algae (microalgae and seaweed), duckweed, and rapeseed.
Abstract: Novel protein sources (like insects, algae, duckweed, and rapeseed) are expected to enter the European feed and food market as replacers for animal-derived proteins. However, food safety aspects of these novel protein sources are not well-known. The aim of this article is to review the state of the art on the safety of major novel protein sources for feed and food production, in particular insects, algae (microalgae and seaweed), duckweed, and rapeseed. Potential hazards for these protein sources are described and EU legislative requirements as regard to food and feed safety are explained. Potential hazards may include a range of contaminants, like heavy metals, mycotoxins, pesticide residues, as well as pathogens. Some safety aspects of novel protein sources are intrinsic to the product, but many potential hazards can also be due to production methods and processing conditions. These aspects should be considered in advance during product development. European law is unclear on several issues regarding the use of novel protein sources in food and feed products. For food product applications, the most important question for food producers is whether or not the product is considered a novel food. One of the major unclarities for feed applications is whether or not products with insects are considered animal-derived products or not. Due to the unclarities in European law, it is not always clear which Regulation and maximum levels for contaminants apply. For market introduction, European legislation should be adjusted and clarified.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors identify three categories of challenges that have to be addressed to maintain and enhance human health in the face of increasingly harmful environmental trends: conceptual and empathy failures (imagination challenges), such as an overreliance on gross domestic product as a measure of human progress, the failure to account for future health and environmental harms over present day gains, and the disproportionate eff ect of those harms on the poor and those in developing nations.

1,452 citations

Journal ArticleDOI
Maeve Henchion1, Maria Hayes1, Anne Maria Mullen1, Mark A. Fenelon1, Brijesh K. Tiwari1 
20 Jul 2017-Foods
TL;DR: This paper outlines some potential demand scenarios and provides an overview of selected existing and novel protein sources in terms of their potential to sustainably deliver protein for the future, considering drivers and challenges relating to nutritional, environmental, and technological and market/consumer domains.
Abstract: A growing global population, combined with factors such as changing socio-demographics, will place increased pressure on the world’s resources to provide not only more but also different types of food. Increased demand for animal-based protein in particular is expected to have a negative environmental impact, generating greenhouse gas emissions, requiring more water and more land. Addressing this “perfect storm” will necessitate more sustainable production of existing sources of protein as well as alternative sources for direct human consumption. This paper outlines some potential demand scenarios and provides an overview of selected existing and novel protein sources in terms of their potential to sustainably deliver protein for the future, considering drivers and challenges relating to nutritional, environmental, and technological and market/consumer domains. It concludes that different factors influence the potential of existing and novel sources. Existing protein sources are primarily hindered by their negative environmental impacts with some concerns around health. However, they offer social and economic benefits, and have a high level of consumer acceptance. Furthermore, recent research emphasizes the role of livestock as part of the solution to greenhouse gas emissions, and indicates that animal-based protein has an important role as part of a sustainable diet and as a contributor to food security. Novel proteins require the development of new value chains, and attention to issues such as production costs, food safety, scalability and consumer acceptance. Furthermore, positive environmental impacts cannot be assumed with novel protein sources and care must be taken to ensure that comparisons between novel and existing protein sources are valid. Greater alignment of political forces, and the involvement of wider stakeholders in a governance role, as well as development/commercialization role, is required to address both sources of protein and ensure food security.

689 citations


Cites background from "Safety of Novel Protein Sources (In..."

  • ...They are particularly important in the diet in developing nations and wheat accounts for largest group of plant protein sources in the Western diet [13]; in the form of bread, wheat is a key component of protein delivery in Europe with a typical loaf containing 8 g of protein per 100 g....

    [...]

  • ...Crickets, lesser mealworm and yellow mealworm are potential insects for application for food in the EU while black soldier fly, yellow mealworm and the common housefly have potential for use in feed products [13]....

    [...]

  • ...Cereal proteins account for the major portion of dietary protein intake globally [13,14] and are important for animals as well as humans....

    [...]

  • ...Approximately 30% of global algal production is sold for animal feed [13] with potential for further increases as dried, defatted algae could compete with soybean in pig and chicken feed, potentially replacing up to one third of soybean meal in their diets [31]....

    [...]

  • ...Some safety hazards include potential accumulation of heavy metals, high levels of iodine, and contaminants such as dioxins and pesticides [13]....

    [...]

Journal ArticleDOI
Stephen Bleakley1, Maria Hayes1
26 Apr 2017-Foods
TL;DR: The characteristics of commonly consumed algae, as well as their potential for use as a protein source based on their protein quality, amino acid composition, and digestibility are detailed.
Abstract: Population growth combined with increasingly limited resources of arable land and fresh water has resulted in a need for alternative protein sources. Macroalgae (seaweed) and microalgae are examples of under-exploited “crops”. Algae do not compete with traditional food crops for space and resources. This review details the characteristics of commonly consumed algae, as well as their potential for use as a protein source based on their protein quality, amino acid composition, and digestibility. Protein extraction methods applied to algae to date, including enzymatic hydrolysis, physical processes, and chemical extraction and novel methods such as ultrasound-assisted extraction, pulsed electric field, and microwave-assisted extraction are discussed. Moreover, existing protein enrichment methods used in the dairy industry and the potential of these methods to generate high value ingredients from algae, such as bioactive peptides and functional ingredients are discussed. Applications of algae in human nutrition, animal feed, and aquaculture are examined.

545 citations


Cites background from "Safety of Novel Protein Sources (In..."

  • ...Microalgae do not appear to exceed legal levels of heavy metals [261]....

    [...]

Journal ArticleDOI
TL;DR: The present review discusses the potential of locusts, grasshoppers, termites, yellow mealworms, Asiatic rhinoceros beetles, superworms, domesticated silkworms, common houseflies, common mosquitoes and black soldier flies for use as fishmeal and/or fish oil replacement in the fish diet.

529 citations


Cites background from "Safety of Novel Protein Sources (In..."

  • ...…of insecticides, heavy metals and natural toxins in insects 450 harvested from the wild can be monitored more easily in mass rearing setups through controls of their rearing 451 substrates (van der Spiegel et al., 2013), especially when organic by-products are proposed as diets for the insects....

    [...]

Journal ArticleDOI
TL;DR: It is concluded that for both biological and chemical hazards, the specific production methods, the substrate used, the stage of harvest, the insect species and developmental stage, as well as the methods for further processing will all have an impact on the occurrence and levels of Biological and chemical contaminants in food and feed products derived from insects.
Abstract: The present opinion has the format of a risk profile and presents potential biological and chemical hazards as well as allergenicity and environmental hazards associated with farmed insects used as food and feed taking into account of the entire chain, from farming to the final product. The opinion also addresses the occurrence of these hazards in non-processed insects, grown on different substrate categories, in comparison to the occurrence of these hazards in other non-processed sources of protein of animal origin. When currently allowed feed materials are used as substrate to feed insects, the possible occurrence of microbiological hazards is expected to be comparable to their occurrence in other non-processed sources of protein of animal origin. The possible occurrence of prions in non-processed insects will depend on whether the substrate includes protein of human or ruminant origin. Data on transfer of chemical contaminants from different substrates to the insects are very limited. Substrates like kitchen waste, human and animal manure are also considered and hazards from insects fed on these substrates need to be specifically assessed. It is concluded that for both biological and chemical hazards, the specific production methods, the substrate used, the stage of harvest, the insect species and developmental stage, as well as the methods for further processing will all have an impact on the occurrence and levels of biological and chemical contaminants in food and feed products derived from insects. Hazards related to the environment are expected to be comparable to other animal production systems. The opinion also identifies the uncertainties (lack of knowledge) related to possible hazards when insects are used as food and feed and notes that there are no systematically collected data on animal and human consumption of insects. Studies on the occurrence of microbial pathogens of vertebrates as well as published data on hazardous chemicals in reared insects are scarce. Further data generation on these issues are highly recommended.

473 citations

References
More filters
Book
01 Jan 2006
TL;DR: In this article, the authors assess the full impact of the livestock sector on environmental problems, along with potential technical and policy approaches to mitigation, and suggest that it should be a major policy focus when dealing with problems of land degradation, climate change and air pollution, water shortage and water pollution, and loss of biodiversity.
Abstract: Presentation de l'editeur : This report aims to assess the full impact of the livestock sector on environmental problems, along with potential technical and policy approaches to mitigation. The assessment takes into account direct impacts, along with the impacts of feed crop agriculture required for livestock production. The livestock sector emerges as one of the top two or three most significant contributors to the most serious environmental problems, at every scale from local to global. The findings of this report suggest that it should be a major policy focus when dealing with problems of land degradation, climate change and air pollution, water shortage and water pollution, and loss of biodiversity. Livestock's contribution to environmental problems is on a massive scale and its potential contribution to their solution is equally large. The impact is so significant that it needs to be addressed with urgency. Major reductions in impact could be achieved at reasonable cost

3,911 citations

Journal ArticleDOI
TL;DR: The first use of microalgae by humans dates back 2000 years to the Chinese, who used Nostoc to survive during famine, while future research should focus on the improvement of production systems and the genetic modification of strains.

3,793 citations

Book
28 Jan 1994
TL;DR: Algal production systems, culture media, and methods (indoors) and applications of algae culture collections are introduced.
Abstract: 1. Introduction 2. Algal production systems 3. Culture media 4. Cultivation methods (indoors) 5. Scaling up 6. Algal grouping 7. Strain selection 8. Growth kinetics 9. Measurement of algal growth 10. Large scale cultivation 11. Yield 12. Chemical composition 13. Nutrition 14. Applications of algae 15. Addresses of algae culture collections.

1,233 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the potential of duckweed (Lemna minor L.) to accumulate Cd, Cr, Cu, Ni, Pb, and Se when supplied individually in a nutrient solution at a series of concentrations ranging from 0.1 to 10 mg L -1.
Abstract: There has been much interest recently in the use of constructed wetlands for the removal of toxic trace elements from wastewaters. Wetland plants play an important role in the trace elements removal process. It is not known, however, which wetland plant species absorb specific trace elements at the fastest rates. Such knowledge is essential to maximize the efficiency of trace element removal by wetlands. In this study, we investigated the potential of duckweed (Lemna minor L.) to accumulate Cd, Cr, Cu, Ni, Pb, and Se when supplied individually in a nutrient solution at a series of concentrations ranged from 0.1 to 10 mg L -1 . The results show that under experimental conditions, duckweed proved to be a good accumulator of Cd, Se, and Cu, a moderate accumulator of Cr, and a poor accumulator of Ni and Pb. The highest concentrations of each trace element accumulated in duckweed tissues were 133 g Cd kg -1 , 4.27 g Se kg -1 , 336 g Cu kg -1 , 2.87 g Cr kg -1 , 1.79 g Ni kg -1 , and 0.63 g Pb kg -1 . Duckweed exhibited some symptoms of toxicity (e.g, reduced growth, chlorosis) at higher levels of element supply (except for Cr). The toxicity effect of each trace element on plant growth was, in descending order of damage, Cu > Se > Pb > Cd > Ni > Cr. We conclude that duckweed shows promise for the removal of Cd, Se, and Cu from contaminated wastewater since it accumulates high concentrations of these elements. Further, the growth rates and harvest potential make duckweed a good species for phytoremediation activities.

593 citations

Book ChapterDOI
16 Nov 2007

529 citations