scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Salience Network–Based Classification and Prediction of Symptom Severity in Children With Autism

01 Aug 2013-JAMA Psychiatry (American Medical Association)-Vol. 70, Iss: 8, pp 869-879
TL;DR: Salience network hyperconnectivity may be a distinguishing feature in children with ASD and Quantification of brain network connectivity is a step toward developing biomarkers for objectively identifying children with Autism spectrum disorder.
Abstract: Importance Autism spectrum disorder (ASD) affects 1 in 88 children and is characterized by a complex phenotype, including social, communicative, and sensorimotor deficits. Autism spectrum disorder has been linked with atypical connectivity across multiple brain systems, yet the nature of these differences in young children with the disorder is not well understood. Objectives To examine connectivity of large-scale brain networks and determine whether specific networks can distinguish children with ASD from typically developing (TD) children and predict symptom severity in children with ASD. Design, Setting, and Participants Case-control study performed at Stanford University School of Medicine of 20 children 7 to 12 years old with ASD and 20 age-, sex-, and IQ-matched TD children. Main Outcomes and Measures Between-group differences in intrinsic functional connectivity of large-scale brain networks, performance of a classifier built to discriminate children with ASD from TD children based on specific brain networks, and correlations between brain networks and core symptoms of ASD. Results We observed stronger functional connectivity within several large-scale brain networks in children with ASD compared with TD children. This hyperconnectivity in ASD encompassed salience, default mode, frontotemporal, motor, and visual networks. This hyperconnectivity result was replicated in an independent cohort obtained from publicly available databases. Using maps of each individual’s salience network, children with ASD could be discriminated from TD children with a classification accuracy of 78%, with 75% sensitivity and 80% specificity. The salience network showed the highest classification accuracy among all networks examined, and the blood oxygen–level dependent signal in this network predicted restricted and repetitive behavior scores. The classifier discriminated ASD from TD in the independent sample with 83% accuracy, 67% sensitivity, and 100% specificity. Conclusions and Relevance Salience network hyperconnectivity may be a distinguishing feature in children with ASD. Quantification of brain network connectivity is a step toward developing biomarkers for objectively identifying children with ASD.
Citations
More filters
Journal ArticleDOI
TL;DR: Emerging evidence suggests that atypical engagement of specific subdivisions of the insula within the salience network is a feature of many neuropsychiatric disorders.
Abstract: The brain is constantly bombarded by stimuli, and the relative salience of these inputs determines which are more likely to capture attention. A brain system known as the 'salience network', with key nodes in the insular cortices, has a central role in the detection of behaviourally relevant stimuli and the coordination of neural resources. Emerging evidence suggests that atypical engagement of specific subdivisions of the insula within the salience network is a feature of many neuropsychiatric disorders.

1,484 citations

Journal ArticleDOI
TL;DR: There is extensive evidence showing the great potential of neuroimaging data for single subject prediction of various disorders, however, the main bottleneck of this exciting field is still the limited sample size, which could be potentially addressed by modern data sharing models such as the ones discussed in this paper.

699 citations


Additional excerpts

  • ...…N C O R R E C 2008; Landis et al., 2015; Marcus et al., 2007; Poldrack et al., 2013; Scott et al., 2011; Turner, 2014; Van Essen et al., 2013)....

    [...]

Journal ArticleDOI
TL;DR: It is suggested that by placing recent empirical findings within a developmental framework, and explicitly characterizing age and pubertal stage in future work, it may be possible to resolve conflicting findings of hypo- and hyper-connectivity in the extant literature and arrive at a more comprehensive understanding of the neurobiology of autism.
Abstract: While there is almost universal agreement amongst researchers that autism is associated with alterations in brain connectivity, the precise nature of these alterations continues to be debated. Theoretical and empirical work is beginning to reveal that autism is associated with a complex functional phenotype characterized by both hypo- and hyper-connectivity of large-scale brain systems. It is not yet understood why such conflicting patterns of brain connectivity are observed across different studies, and the factors contributing to these heterogeneous findings have not been identified. Develoopmental changes in functional connectivity have received inadequate attention to date. We propose that discrepancies between findings of autism related hypo-connectivity and hyper-connectivity might be reconciled by taking developmental changes into account. We review neuroimaging studies of autism, with an emphasis on functional magnetic resonance imaging studies of intrinsic functional connectivity in children, adolescents and adults. The consistent pattern emerging across several studies is that while intrinsic functional connectivity in adolescents and adults with autism is generally reduced compared with age-matched controls, functional connectivity in younger children with the disorder appears to be increased. We suggest that by placing recent empirical findings within a developmental framework, and explicitly characterizing age and pubertal stage in future work, it may be possible to resolve conflicting findings of hypo- and hyper-connectivity in the extant literature and arrive at a more comprehensive understanding of the neurobiology of autism.

426 citations


Cites background or methods from "Salience Network–Based Classificati..."

  • ...According to the latest reports, ASD affects nearly 1 in 88 children, and the prevalence continues to grow (Investigators, 2012)....

    [...]

  • ...There is already evidence to suggest that in children with the disorder, widespread hyper-connectivity can be observed (Supekar et al., 2012; Uddin et al., 2013) alongside both hypo-connectivity (Abrams et al., 2013; Lynch et al., 2013) and hyper-connectivity (Di Martino et al., 2011) between…...

    [...]

  • ...However, there is emerging evidence that challenges these models and suggests that functional connectivity between brain regions can be stronger in ASD (Uddin et al., 2013)....

    [...]

  • ...While there are several limitations to Tanner staging (including ethnic homogeneity of the scale), the test is the current gold standard for puberty assessment....

    [...]

  • ...…recent demonstration of high levels of classification accuracy based on examination of specific intrinsic large-scale networks in 7–12 year-old children highlights the utility of using data from narrower developmental windows to identify potential biomarkers for the disorder (Uddin et al., 2013)....

    [...]

Journal ArticleDOI
TL;DR: This study provides fundamental new insights into the distinct dynamic functional architecture of the salience network and demonstrates how this network is uniquely positioned to facilitate interactions with multiple functional systems and thereby support a wide range of cognitive processes in the human brain.
Abstract: One of the most fundamental features of the human brain is its ability to detect and attend to salient goal-relevant events in a flexible manner. The salience network (SN), anchored in the anterior insula and the dorsal anterior cingulate cortex, plays a crucial role in this process through rapid detection of goal-relevant events and facilitation of access to appropriate cognitive resources. Here, we leverage the subsecond resolution of large multisession fMRI datasets from the Human Connectome Project and apply novel graph-theoretical techniques to investigate the dynamic spatiotemporal organization of the SN. We show that the large-scale brain dynamics of the SN are characterized by several distinctive and robust properties. First, the SN demonstrated the highest levels of flexibility in time-varying connectivity with other brain networks, including the frontoparietal network (FPN), the cingulate–opercular network (CON), and the ventral and dorsal attention networks (VAN and DAN). Second, dynamic functional interactions of the SN were among the most spatially varied in the brain. Third, SN nodes maintained a consistently high level of network centrality over time, indicating that this network is a hub for facilitating flexible cross-network interactions. Fourth, time-varying connectivity profiles of the SN were distinct from all other prefrontal control systems. Fifth, temporal flexibility of the SN uniquely predicted individual differences in cognitive flexibility. Importantly, each of these results was also observed in a second retest dataset, demonstrating the robustness of our findings. Our study provides fundamental new insights into the distinct dynamic functional architecture of the SN and demonstrates how this network is uniquely positioned to facilitate interactions with multiple functional systems and thereby support a wide range of cognitive processes in the human brain.

355 citations

Journal ArticleDOI
TL;DR: It is proposed that individualized alterations in functional connectivity organization are a core characteristic of high-functioning ASD, and that this may account for previous discrepant findings.
Abstract: Autism spectrum disorder (ASD) has been associated with a reduction in resting state functional connectivity, though this assertion has recently been challenged by reports of increased connectivity in ASD. To address these contradictory findings, we examined both inter- and intrahemispheric functional connectivity in several resting state data sets acquired from adults with high-functioning ASD and matched control participants. Our results reveal areas of both increased and decreased connectivity in multiple ASD groups as compared to control groups. We propose that this heterogeneity stems from a previously unrecognized ASD characteristic: idiosyncratic distortions of the functional connectivity pattern relative to the typical, canonical template. The magnitude of an individual's pattern distortion in homotopic interhemispheric connectivity correlated significantly with behavioral symptoms of ASD. We propose that individualized alterations in functional connectivity organization are a core characteristic of high-functioning ASD, and that this may account for previous discrepant findings.

351 citations

References
More filters
Journal ArticleDOI
TL;DR: In comparative timings, the new algorithms are considerably faster than competing methods and can handle large problems and can also deal efficiently with sparse features.
Abstract: We develop fast algorithms for estimation of generalized linear models with convex penalties. The models include linear regression, two-class logistic regression, and multinomial regression problems while the penalties include l(1) (the lasso), l(2) (ridge regression) and mixtures of the two (the elastic net). The algorithms use cyclical coordinate descent, computed along a regularization path. The methods can handle large problems and can also deal efficiently with sparse features. In comparative timings we find that the new algorithms are considerably faster than competing methods.

13,656 citations


"Salience Network–Based Classificati..." refers methods in this paper

  • ...To examine the associations between ASD symptom severity and brain networks, we used a multivariate sparse regression analysis.(63) On the basis of our a priori hypotheses(41) and the finding that the salience network exhibited both strong group differences and the highest classification accuracy for discriminating ASD from TD, we focused on exploring relationships with this specific net50 80...

    [...]

Journal ArticleDOI
TL;DR: It is concluded that correlation of low frequency fluctuations, which may arise from fluctuations in blood oxygenation or flow, is a manifestation of functional connectivity of the brain.
Abstract: An MRI time course of 512 echo-planar images (EPI) in resting human brain obtained every 250 ms reveals fluctuations in signal intensity in each pixel that have a physiologic origin. Regions of the sensorimotor cortex that were activated secondary to hand movement were identified using functional MRI methodology (FMRI). Time courses of low frequency (< 0.1 Hz) fluctuations in resting brain were observed to have a high degree of temporal correlation (P < 10(-3)) within these regions and also with time courses in several other regions that can be associated with motor function. It is concluded that correlation of low frequency fluctuations, which may arise from fluctuations in blood oxygenation or flow, is a manifestation of functional connectivity of the brain.

8,766 citations


"Salience Network–Based Classificati..." refers background in this paper

  • ...The motor network comprises regions of precentral gyrus and supplementary motor area.(62) Primary and association visual networks were observed,(58) spanning medial and lateral surfaces of the occipiTable 1....

    [...]

Journal ArticleDOI
TL;DR: Past observations are synthesized to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment, and for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.
Abstract: Thirty years of brain imaging research has converged to define the brain’s default network—a novel and only recently appreciated brain system that participates in internal modes of cognition Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations These two subsystems converge on important nodes of integration including the posterior cingulate cortex The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer’s disease

8,448 citations


"Salience Network–Based Classificati..." refers result in this paper

  • ...The DMN is involved in many of the processes that are compromised in individuals with autism, including social and interpersonal cognition.(70,71) Our current findings contrast with previously published studies(21-23,26) of DMN hypoconnectivity in adults and adolescents with ASD, underscoring the critical need for examining brain connectivity in younger children, where a different picture is beginning Table 2....

    [...]

Journal ArticleDOI
TL;DR: The revised interview has been reorganized, shortened, modified to be appropriate for children with mental ages from about 18 months into adulthood and linked to ICD-10 and DSM-IV criteria.
Abstract: Describes the Autism Diagnostic Interview-Revised (ADI-R), a revision of the Autism Diagnostic Interview, a semistructured, investigator-based interview for caregivers of children and adults for whom autism or pervasive developmental disorders is a possible diagnosis. The revised interview has been reorganized, shortened, modified to be appropriate for children with mental ages from about 18 months into adulthood and linked to ICD-10 and DSM-IV criteria. Psychometric data are presented for a sample of preschool children.

8,264 citations

Journal ArticleDOI
TL;DR: Algorithm sensitivities and specificities for autism and PD DNOS relative to nonspectrum disorders were excellent, with moderate differentiation of autism from PDDNOS.
Abstract: The Autism Diagnostic Observation Schedule-Generic (ADOS-G) is a semistructured, standardized assessment of social interaction, communication, play, and imaginative use of materials for individuals suspected of having autism spectrum disorders. The observational schedule consists of four 30-minute modules, each designed to be administered to different individuals according to their level of expressive language. Psychometric data are presented for 223 children and adults with Autistic Disorder (autism), Pervasive Developmental Disorder Not Otherwise Specified (PDDNOS) or nonspectrum diagnoses. Within each module, diagnostic groups were equivalent on expressive language level. Results indicate substantial interrater and test-retest reliability for individual items, excellent interrater reliability within domains and excellent internal consistency. Comparisons of means indicated consistent differentiation of autism and PDDNOS from nonspectrum individuals, with some, but less consistent, differentiation of autism from PDDNOS. A priori operationalization of DSM-IV/ICD-10 criteria, factor analyses, and ROC curves were used to generate diagnostic algorithms with thresholds set for autism and broader autism spectrum/PDD. Algorithm sensitivities and specificities for autism and PDDNOS relative to nonspectrum disorders were excellent, with moderate differentiation of autism from PDDNOS.

7,012 citations

Related Papers (5)