scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sarcopenia, obesity, and sarcopenic obesity: Relationship with skeletal muscle phenotypes and single nucleotide polymorphisms

TL;DR: In this paper, Biceps brachii thickness and vastus lateralis cross-sectional area (VLACSA) were measured with B-mode ultrasonography, and a two-way analysis of covariance was used to assess the main effects of sarcopenia and obesity on muscle-related phenotypes and binary logistic regression was performed for each SNP.
Abstract: Obesity may aggravate the effects of sarcopenia on skeletal muscle structure and function in the elderly, but no study has attempted to identify the gene variants associated with sarcopenia in obese women. Therefore, the aims of the present study were to: (1) describe neuromuscular function in sarcopenic and non-sarcopenic women with or without obesity; (2) identify gene variants associated with sarcopenia in older obese women. In 307 Caucasian women (71 ± 6 years, 66.3 ± 11.3 kg), skeletal muscle mass was estimated using bioelectric impedance, and function was tested with a 30 s one-leg standing-balance test. Biceps brachii thickness and vastus lateralis cross-sectional area (VLACSA) were measured with B-mode ultrasonography. Handgrip strength, maximum voluntary contraction elbow flexion (MVCEF), and knee extension torque (MVCKE) were measured by dynamometry, and MVCKE/VLACSA was calculated. Genotyping was performed for 24 single-nucleotide polymorphisms (SNPs), selected based on their previous associations with muscle-related phenotypes. Based on sarcopenia and obesity thresholds, groups were classified as sarcopenic obese, non-sarcopenic obese, sarcopenic non-obese, or non-sarcopenic non-obese. A two-way analysis of covariance was used to assess the main effects of sarcopenia and obesity on muscle-related phenotypes and binary logistic regression was performed for each SNP to investigate associations with sarcopenia in obesity. There were no significant obesity * sarcopenic status interactions for any of the investigated muscle-related phenotypic parameters. Neither sarcopenia nor obesity had a significant effect on biceps brachii thickness, but sarcopenia was associated with lower VLACSA (p = 0.003). Obesity was associated with lower MVCEF (p = 0.032), MVCKE (p = 0.047), and MVCKE/VLACSA (p = 0.012) with no significant effect of sarcopenia. Adjusted for age and height, three SNPs (ACTN3 rs1815739, MTHFR rs1801131, and MTHFR rs1537516) were associated with sarcopenia in obese participants. Sarcopenia was associated with a smaller muscle size, while obesity resulted in a lower muscle quality irrespective of sarcopenia. Three gene variants (ACTN3 rs1815739, MTHFR rs1801131, and MTHFR rs1537516) suspected to affect muscle function, homocysteine metabolism, or DNA methylation, respectively, were associated with sarcopenia in obese elderly women. Understanding the skeletal muscle features affected by sarcopenia and obesity, and identification of genes related to sarcopenia in obese women, may facilitate early detection of individuals at particular risk of sarcopenic obesity.
Citations
More filters
Journal ArticleDOI
TL;DR: The aim of this systematic review and meta‐analysis was to investigate the impact of vitamin D supplementation monotherapy on indices of sarcopenia in community‐dwelling older adults.
Abstract: Vitamin D supplementation is proposed as a potentially effective nutritional intervention to mitigate the risk of sarcopenia. The aim of this systematic review and meta‐analysis was to investigate the impact of vitamin D supplementation monotherapy on indices of sarcopenia in community‐dwelling older adults.

23 citations

Journal ArticleDOI
TL;DR: In this article , a prospective study was performed on 200 patients with SARS-CoV-2 history (14 days), with SPPB score < 9, randomly divided into: Group K-DP (93 patients) with dietary therapy (protein 1.2 − 1.5 g/kg) and probiotics for two months; and Group K−DP (107 patients) without diet therapy and probiotic.
Abstract: The prolonged immobilization associated with COVID-19 infection and the restrictions imposed by the pandemic have determined major changes in physical activity and eating habits, with a negative impact on physical performance. This study monitored non-pharmacological interventions (diet therapy and probiotics) in managing sarcopenia for patients with recent SARS-CoV-2 history (14 days). A prospective study was performed on 200 patients (between December 2020–December 2021), with SPPB score < 9, randomly divided into: Group K—DP (93 patients) with dietary therapy (protein 1.2–1.5 g/kg) and probiotics for two months; and Group K—non-DP (107 patients) without diet therapy and probiotics. All patients were included in a specific physical training program (40 min), three sessions per week. Skeletal muscle index (SMI), serum albumin, and hemoglobin were determined. The SMI was initially low for both groups without significant statistical differences (6.5 ± 0.52 kg/m2 for Group K—non-DP vs. 6.7 ± 0.57 Kg/m2 for Group K—DP, p = 0.135). After two months, significant difference between initial and final SMI values was determined for Group K—DP (6.92 ± 0.50 kg/m2 vs. 6.77 ± 0.56 kg/m2, p = 0.048). In Group K—DP, at end of study, were more patients with normal SMI (n = 32 → N = 70) values (p < 0.001) and fewer sarcopenia patients (p < 0.001). The initial serum albumin means values in the two groups (Group K—non-DP, 4.17 ± 1.04 g/dL, and Group K—DP, 3.95 ± 0.98 g/dL) were not statistically significantly different (p = 0.122). The hemoglobin level improved significantly following a hyper protein diet enriched with pro-biotics (p = 0.003). Diet therapy, consisting of increased protein intake and specific probiotics and specific physical therapy, demonstrated superiority in improving the functional status of patients with recent COVID-19 infection.

7 citations

Journal ArticleDOI
TL;DR: Based on the results, abnormal body composition is prevalent in elderly subjects, and sarcopenia and SO are often associated with PNS.
Abstract: Poor nutritional status (PNS) is a modifiable factor determining abnormalities in body composition-sarcopenia, obesity, and sarcopenic obesity (SO). We aimed to assess the prevalence of these conditions and their association with PNS in 211 community-dwelling older adults. Sarcopenia was diagnosed based on the European Working Group on Sarcopenia in Older People 2 (EWGSOP2) recommendations. Obesity was diagnosed with the Percent Body Fat (>42% in women and >30% in men). Subjects fulfilling the criteria for obesity and concomitantly with reduced lower and/or upper limbs muscle strength and muscle mass (ALM/BMI < 0.512 in women and <0.789 in men) were classified as SO phenotype. Participants without obesity and sarcopenia were categorized as ‘normal’ phenotype. Nutritional status was estimated with the Mini Nutritional Assessment, and a score of <24 indicated PNS. In total, 49.8% participants had abnormal body composition (60.7% men and 42.5% women; p = 0.001). Sarcopenia, obesity, and SO were diagnosed in 10%, 32.7%, and 7.1% of subjects. PNS was found in 31.3% of the study sample. Its prevalence differed between phenotypes: 81% in sarcopenia, 60% in SO, 14.5% in obesity, and 28.3% in the ‘normal’ phenotype group (p = 0.000). Based on the results, abnormal body composition is prevalent in elderly subjects. Sarcopenia and SO are often associated with PNS.

6 citations

Journal ArticleDOI
TL;DR: Use of international classification of sarcopenia and a set of core standardized outcome measures should be adopted to aid future investigation and recommendations to be made.
Abstract: Lower limb muscle dysfunction is a key driver for impaired physical capacity and frailty status, both characteristics of sarcopenia. Sarcopenia is the key pathway between frailty and disability. Identifying biological markers for early diagnosis, treatment, and prevention may be key to early intervention and prevention of disability particularly mobility issues. To identify biological markers associated with lower limb muscle (dys)function in adults with sarcopenia, a systematic literature search was conducted in AMED, CINAHL, Cochrane Library, EMBASE, Medline, PubMed, Scopus, SPORTDiscus, and Web of Science databases from inception to 17 November 2021. Title, abstract, and full‐text screening, data extraction, and methodological quality assessment were performed by two reviewers independently and verified by a third reviewer. Depending on available data, associations are reported as either Pearson's correlations, regression R2 or partial R2, P value, and sample size (n). Twenty eligible studies including 3306 participants were included (females: 79%, males: 15%, unreported: 6%; mean age ranged from 53 to 92 years) with 36% in a distinct sarcopenic subgroup (females: 73%, males: 19%, unreported: 8%; mean age range 55–92 years). A total of 119 biomarkers were reported, categorized into: genetic and microRNAs (n = 64), oxidative stress (n = 10), energy metabolism (n = 18), inflammation (n = 7), enzyme (n = 4), hormone (n = 7), bone (n = 3), vitamin (n = 2), and cytokine (n = 4) markers) and seven lower limb muscle measures predominately focused on strength. Seven studies reported associations between lower limb muscle measures including (e.g. power, force, and torque) and biomarkers. In individuals with sarcopenia, muscle strength was positively associated with free testosterone (r = 0.40, P = 0.01; n = 46). In analysis with combined sarcopenic and non‐sarcopenic individuals, muscle strength was positively associated with combined genetic and methylation score (partial R2 = 0.122, P = 0.03; n = 48) and negatively associated with sarcopenia‐driven methylation score (partial R2 = 0.401, P < 0.01; n = 48). Biomarkers related to genetics (R2 = 0.001–0.014, partial R2 = 0.013–0.122, P > 0.05; n = 48), oxidative stress (r = 0.061, P > 0.05; n ≥ 77), hormone (r = 0.01, ρ = 0.052 p > 0.05, n ≥ 46) and combined protein, oxidative stress, muscle performance, and hormones (R2 = 22.0, P > 0.05; n ≥ 82) did not report significant associations with lower limb muscle strength. Several biomarkers demonstrated associations with lower limb muscle dysfunction. The current literature remains difficult to draw clear conclusions on the relationship between biomarkers and lower limb muscle dysfunction in adults with sarcopenia. Heterogeneity of biomarkers and lower limb muscle function precluded direct comparison. Use of international classification of sarcopenia and a set of core standardized outcome measures should be adopted to aid future investigation and recommendations to be made.

5 citations

Journal ArticleDOI
TL;DR: A U-Net-based deep learning model for automatic muscle segmentation and quantification of full-leg plain radiographs is presented and the potential of the model to predict sarcopenia in patients undergoing total knee arthroplasty (TKA) is illustrated.
Abstract: Sarcopenia, an age-related loss of skeletal muscle mass and function, is correlated with adverse outcomes after some surgeries. Here, we present a deep-learning-based model for automatic muscle segmentation and quantification of full-leg plain radiographs. We illustrated the potential of the model to predict sarcopenia in patients undergoing total knee arthroplasty (TKA). A U-Net-based deep learning model for automatic muscle segmentation was developed, trained and validated on the plain radiographs of 227 healthy volunteers. The radiographs of 403 patients scheduled for primary TKA were reviewed to test the developed model and explore its potential to predict sarcopenia. The proposed deep learning model achieved mean IoU values of 0.959 (95% CI 0.959–0.960) and 0.926 (95% CI 0.920–0.931) in the training set and test set, respectively. The fivefold AUC value of the sarcopenia classification model was 0.988 (95% CI 0.986–0.989). Of seven key predictors included in the model, the predicted muscle volume (PMV) was the most important of these features in the decision process. In the preoperative clinical setting, wherein laboratory tests and radiographic imaging are available, the proposed deep-learning-based model can be used to screen for sarcopenia in patients with knee osteoarthritis undergoing TKA with high sarcopenia screening performance.

2 citations

References
More filters
Journal ArticleDOI
TL;DR: The European Working Group on Sarcopenia in Older People (EWGSOP) developed a practical clinical definition and consensus diagnostic criteria for age-related sarcopenia as discussed by the authors.
Abstract: The European Working Group on Sarcopenia in Older People (EWGSOP) developed a practical clinical definition and consensus diagnostic criteria for age-related sarcopenia. EWGSOP included representatives from four participant organisations, i.e. the European Geriatric Medicine Society, the European Society for Clinical Nutrition and Metabolism, the International Association of Gerontology and Geriatrics-European Region and the International Association of Nutrition and Aging. These organisations endorsed the findings in the final document. The group met and addressed the following questions, using the medical literature to build evidence-based answers: (i) What is sarcopenia? (ii) What parameters define sarcopenia? (iii) What variables reflect these parameters, and what measurement tools and cut-off points can be used? (iv) How does sarcopenia relate to cachexia, frailty and sarcopenic obesity? For the diagnosis of sarcopenia, EWGSOP recommends using the presence of both low muscle mass + low muscle function (strength or performance). EWGSOP variously applies these characteristics to further define conceptual stages as 'presarcopenia', 'sarcopenia' and 'severe sarcopenia'. EWGSOP reviewed a wide range of tools that can be used to measure the specific variables of muscle mass, muscle strength and physical performance. Our paper summarises currently available data defining sarcopenia cut-off points by age and gender; suggests an algorithm for sarcopenia case finding in older individuals based on measurements of gait speed, grip strength and muscle mass; and presents a list of suggested primary and secondary outcome domains for research. Once an operational definition of sarcopenia is adopted and included in the mainstream of comprehensive geriatric assessment, the next steps are to define the natural course of sarcopenia and to develop and define effective treatment.

8,440 citations

Journal ArticleDOI
TL;DR: An emphasis is placed on low muscle strength as a key characteristic of sarcopenia, uses detection of low muscle quantity and quality to confirm the sarc Openia diagnosis, and provides clear cut-off points for measurements of variables that identify and characterise sarc openia.
Abstract: Background in 2010, the European Working Group on Sarcopenia in Older People (EWGSOP) published a sarcopenia definition that aimed to foster advances in identifying and caring for people with sarcopenia. In early 2018, the Working Group met again (EWGSOP2) to update the original definition in order to reflect scientific and clinical evidence that has built over the last decade. This paper presents our updated findings. Objectives to increase consistency of research design, clinical diagnoses and ultimately, care for people with sarcopenia. Recommendations sarcopenia is a muscle disease (muscle failure) rooted in adverse muscle changes that accrue across a lifetime; sarcopenia is common among adults of older age but can also occur earlier in life. In this updated consensus paper on sarcopenia, EWGSOP2: (1) focuses on low muscle strength as a key characteristic of sarcopenia, uses detection of low muscle quantity and quality to confirm the sarcopenia diagnosis, and identifies poor physical performance as indicative of severe sarcopenia; (2) updates the clinical algorithm that can be used for sarcopenia case-finding, diagnosis and confirmation, and severity determination and (3) provides clear cut-off points for measurements of variables that identify and characterise sarcopenia. Conclusions EWGSOP2's updated recommendations aim to increase awareness of sarcopenia and its risk. With these new recommendations, EWGSOP2 calls for healthcare professionals who treat patients at risk for sarcopenia to take actions that will promote early detection and treatment. We also encourage more research in the field of sarcopenia in order to prevent or delay adverse health outcomes that incur a heavy burden for patients and healthcare systems.

6,250 citations

Journal ArticleDOI
TL;DR: To establish the prevalence of sarc Openia in older Americans and to test the hypothesis that sarcopenia is related to functional impairment and physical disability in older persons is established.
Abstract: OBJECTIVES: To establish the prevalence of sarcopenia in older Americans and to test the hypothesis that sarcope- nia is related to functional impairment and physical dis- ability in older persons. DESIGN: Cross-sectional survey. SETTING: Nationally representative cross-sectional sur- vey using data from the Third National Health and Nutri- tion Examination Survey (NHANES III). PARTICIPANTS: Fourteen thousand eight hundred eigh- teen adult NHANES III participants aged 18 and older. MEASUREMENTS: The presence of sarcopenia and the relationship between sarcopenia and functional impairment and disability were examined in 4,504 adults aged 60 and older. Skeletal muscle mass was estimated from bioimped- ance analysis measurements and expressed as skeletal mus- cle mass index (SMIskeletal muscle mass/body mass � 100). Subjects were considered to have a normal SMI if their SMI was greater than -one standard deviation above the sex-specific mean for young adults (aged 18-39). Class I sarcopenia was considered present in subjects whose SMI was within -one to -two standard deviations of young adult values, and class II sarcopenia was present in subjects whose SMI was below -two standard deviations of young adult values. RESULTS: The prevalence of class I and class II sarcope- nia increased from the third to sixth decades but remained relatively constant thereafter. The prevalence of class I (59% vs 45%) and class II (10% vs 7%) sarcopenia was greater in the older ( � 60 years) women than in the older men ( P � .001). The likelihood of functional impairment and disability was approximately two times greater in the older men and three times greater in the older women with class II sarcopenia than in the older men and women with a normal SMI, respectively. Some of the associations be- tween class II sarcopenia and functional impairment re- mained significant after adjustment for age, race, body mass index, health behaviors, and comorbidity. CONCLUSIONS: Reduced relative skeletal muscle mass in older Americans is a common occurrence that is signifi- cantly and independently associated with functional im- pairment and disability, particularly in older women. These observations provide strong support for the prevailing view that sarcopenia may be an important and potentially re- versible cause of morbidity and mortality in older persons. J Am Geriatr Soc 50:889-896, 2002.

2,710 citations

Journal ArticleDOI
TL;DR: Optimal cutoff values that can be used in the clinical practice to identify older persons with poor mobility were developed and lay the basis for a cost-effective, clinical marker of sarcopenia based on a measure of isometric handgrip strength.
Abstract: Sarcopenia, the reduction of muscle mass and strength that occurs with aging, is widely considered one of the major causes of disability in older persons. Surprisingly, criteria that may help a clinician to identify persons with impaired muscle function are still lacking. Using data from a large representative sample of the general population, we examined how muscle function and calf muscle area change with aging and affect mobility in men and women free of neurological conditions. We tested several putative indicators of sarcopenia, including knee extension isometric torque, handgrip, lower extremity muscle power, and calf muscle area. For each indicator, sarcopenia was considered to be present when the measure was >2 SDs below the mean. For all four measures, the prevalence of sarcopenia increased with age, both in men and women. The age-associated gradient in prevalence was maximum for muscle power and minimum for calf-muscle area. However, lower extremity muscle power was no better than knee-extension torque or handgrip in the early identification of poor mobility, defined either as walking speed <0.8 m/s or inability to walk at least 1 km without difficulty and without developing symptoms. Optimal cutoff values that can be used in the clinical practice to identify older persons with poor mobility were developed. The findings of the study lay the basis for a cost-effective, clinical marker of sarcopenia based on a measure of isometric handgrip strength. Our findings should be verified in a longitudinal study.

1,648 citations

Journal ArticleDOI
TL;DR: The results suggest that the BIA equation provides valid estimates of SM mass in healthy adults varying in age and adiposity.
Abstract: The purpose of this study was to develop and cross-validate predictive equations for estimating skeletal muscle (SM) mass using bioelectrical impedance analysis (BIA). Whole body SM mass, determine...

1,174 citations

Trending Questions (1)
What is the relationship between obesity and sarcopenia?

Obesity may worsen the effects of sarcopenia on skeletal muscle structure and function in the elderly.