scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sarcopenia: Revised European consensus on definition and diagnosis

TL;DR: An emphasis is placed on low muscle strength as a key characteristic of sarcopenia, uses detection of low muscle quantity and quality to confirm the sarc Openia diagnosis, and provides clear cut-off points for measurements of variables that identify and characterise sarc openia.
Abstract: Background in 2010, the European Working Group on Sarcopenia in Older People (EWGSOP) published a sarcopenia definition that aimed to foster advances in identifying and caring for people with sarcopenia. In early 2018, the Working Group met again (EWGSOP2) to update the original definition in order to reflect scientific and clinical evidence that has built over the last decade. This paper presents our updated findings. Objectives to increase consistency of research design, clinical diagnoses and ultimately, care for people with sarcopenia. Recommendations sarcopenia is a muscle disease (muscle failure) rooted in adverse muscle changes that accrue across a lifetime; sarcopenia is common among adults of older age but can also occur earlier in life. In this updated consensus paper on sarcopenia, EWGSOP2: (1) focuses on low muscle strength as a key characteristic of sarcopenia, uses detection of low muscle quantity and quality to confirm the sarcopenia diagnosis, and identifies poor physical performance as indicative of severe sarcopenia; (2) updates the clinical algorithm that can be used for sarcopenia case-finding, diagnosis and confirmation, and severity determination and (3) provides clear cut-off points for measurements of variables that identify and characterise sarcopenia. Conclusions EWGSOP2's updated recommendations aim to increase awareness of sarcopenia and its risk. With these new recommendations, EWGSOP2 calls for healthcare professionals who treat patients at risk for sarcopenia to take actions that will promote early detection and treatment. We also encourage more research in the field of sarcopenia in order to prevent or delay adverse health outcomes that incur a heavy burden for patients and healthcare systems.

Content maybe subject to copyright    Report

Citations
More filters
DOI
01 Jun 2011

618 citations

Journal ArticleDOI
TL;DR: Evidence is provided to support recommendations for successful resistance training in older adults related to 4 parts: program design variables, physiological adaptations, functional benefits, and considerations for frailty, sarcopenia, and other chronic conditions.
Abstract: Fragala, MS, Cadore, EL, Dorgo, S, Izquierdo, M, Kraemer, WJ, Peterson, MD, and Ryan, ED. Resistance training for older adults: position statement from the national strength and conditioning association. J Strength Cond Res 33(8): 2019-2052, 2019-Aging, even in the absence of chronic disease, is associated with a variety of biological changes that can contribute to decreases in skeletal muscle mass, strength, and function. Such losses decrease physiologic resilience and increase vulnerability to catastrophic events. As such, strategies for both prevention and treatment are necessary for the health and well-being of older adults. The purpose of this Position Statement is to provide an overview of the current and relevant literature and provide evidence-based recommendations for resistance training for older adults. As presented in this Position Statement, current research has demonstrated that countering muscle disuse through resistance training is a powerful intervention to combat the loss of muscle strength and muscle mass, physiological vulnerability, and their debilitating consequences on physical functioning, mobility, independence, chronic disease management, psychological well-being, quality of life, and healthy life expectancy. This Position Statement provides evidence to support recommendations for successful resistance training in older adults related to 4 parts: (a) program design variables, (b) physiological adaptations, (c) functional benefits, and (d) considerations for frailty, sarcopenia, and other chronic conditions. The goal of this Position Statement is to a) help foster a more unified and holistic approach to resistance training for older adults, b) promote the health and functional benefits of resistance training for older adults, and c) prevent or minimize fears and other barriers to implementation of resistance training programs for older adults.

505 citations

Journal ArticleDOI
TL;DR: Evidence-based clinical practice guidelines for screening, diagnosis and management of sarcopenia from the task force of the International Conference on Sarcopenia and Frailty Research (ICSFR) are presented.
Abstract: Sarcopenia, defined as an age-associated loss of skeletal muscle function and muscle mass, occurs in approximately 6 - 22 % of older adults. This paper presents evidence-based clinical practice guidelines for screening, diagnosis and management of sarcopenia from the task force of the International Conference on Sarcopenia and Frailty Research (ICSFR). To develop the guidelines, we drew upon the best available evidence from two systematic reviews paired with consensus statements by international working groups on sarcopenia. Eight topics were selected for the recommendations: (i) defining sarcopenia; (ii) screening and diagnosis; (iii) physical activity prescription; (iv) protein supplementation; (v) vitamin D supplementation; (vi) anabolic hormone prescription; (vii) medications under development; and (viii) research. The ICSFR task force evaluated the evidence behind each topic including the quality of evidence, the benefitharm balance of treatment, patient preferences/values, and cost-effectiveness. Recommendations were graded as either strong or conditional (weak) as per the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach. Consensus was achieved via one face-to-face workshop and a modified Delphi process. We make a conditional recommendation for the use of an internationally accepted measurement tool for the diagnosis of sarcopenia including the EWGSOP and FNIH definitions, and advocate for rapid screening using gait speed or the SARC-F. To treat sarcopenia, we strongly recommend the prescription of resistance-based physical activity, and conditionally recommend protein supplementation/a protein-rich diet. No recommendation is given for Vitamin D supplementation or for anabolic hormone prescription. There is a lack of robust evidence to assess the strength of other treatment options.

466 citations


Cites methods from "Sarcopenia: Revised European consen..."

  • ...Of importance, the task force did consider grip strength as a screening tool for sarcopenia, but this was voted out in the consensus process for two main reasons: (i) the new EWGSOP guidelines for sarcopenia [EWGSOP-2 (59)] recommend that grip strength is a diagnostic assessment rather than a screening test; and (ii) the specific feedback we received from the primary care members of our external reviewing group, most of whom stated that they would prefer not to perform grip strength measurement in their primary care clinics....

    [...]

Journal ArticleDOI
TL;DR: The positive association between sarcopenia with falls and fractures in older adults strengthens the need to invest in sarc Openia prevention and interventions to evaluate its effect on falls and fracture.
Abstract: Sarcopenia is a potentially modifiable risk factor for falls and fractures in older adults, but the strength of the association between sarcopenia, falls, and fractures is unclear. This study aims to systematically assess the literature and perform a meta-analysis of the association between sarcopenia with falls and fractures among older adults. A literature search was performed using MEDLINE, EMBASE, Cochrane, and CINAHL from inception to May 2018. Inclusion criteria were the following: published in English, mean/median age ≥ 65 years, sarcopenia diagnosis (based on definitions used by the original studies' authors), falls and/or fractures outcomes, and any study population. Pooled analyses were conducted of the associations of sarcopenia with falls and fractures, expressed in odds ratios (OR) and 95% confidence intervals (CIs). Subgroup analyses were performed by study design, population, sex, sarcopenia definition, continent, and study quality. Heterogeneity was assessed using the I2 statistics. The search identified 2771 studies. Thirty-six studies (52 838 individuals, 48.8% females, and mean age of the study populations ranging from 65.0 to 86.7 years) were included in the systematic review. Four studies reported on both falls and fractures. Ten out of 22 studies reported a significantly higher risk of falls in sarcopenic compared with non-sarcopenic individuals; 11 out of 19 studies showed a significant positive association with fractures. Thirty-three studies (45 926 individuals) were included in the meta-analysis. Sarcopenic individuals had a significant higher risk of falls (cross-sectional studies: OR 1.60; 95% CI 1.37-1.86, P < 0.001, I2 = 34%; prospective studies: OR 1.89; 95% CI 1.33-2.68, P < 0.001, I2 = 37%) and fractures (cross-sectional studies: OR 1.84; 95% CI 1.30-2.62, P = 0.001, I2 = 91%; prospective studies: OR 1.71; 95% CI 1.44-2.03, P = 0.011, I2 = 0%) compared with non-sarcopenic individuals. This was independent of study design, population, sex, sarcopenia definition, continent, and study quality. The positive association between sarcopenia with falls and fractures in older adults strengthens the need to invest in sarcopenia prevention and interventions to evaluate its effect on falls and fractures.

421 citations

References
More filters
Journal ArticleDOI
TL;DR: The results show that muscle mass, obesity, and age influence the relationship between MQ and physical function, suggesting that these factors should be taken into account when interpreting MQ.

71 citations

Journal ArticleDOI
TL;DR: It seems that lower muscle mass is associated with higher cardiometabolic diseases (CMD) when adjusted for weight, but lower CMD whenadjusted for height squared, than sarcopenia and obesity alone.

71 citations


"Sarcopenia: Revised European consen..." refers background in this paper

  • ...In terms of human health, sarcopenia increases risk of falls and fractures [10, 11]; impairs ability to perform activities of daily living [12]; is associated with cardiac disease [13], respiratory disease [14] and cognitive impairment [15]; leads to mobility disorders [2]; and contributes to lowered quality of life [16], loss of independence or need for long-term care placement [17–19], and death [20]....

    [...]

Journal ArticleDOI
TL;DR: To examine the incidence of certified need of care in the national long‐term care insurance system, and to determine its risk factors in the elderly of Japanese population‐based cohorts of the Research on Osteoarthritis/Osteoporosis Against Disability (ROAD) study.
Abstract: Aim To examine the incidence of certified need of care in the national long-term care insurance (LTCI) system, and to determine its risk factors in the elderly of Japanese population-based cohorts of the Research on Osteoarthritis/Osteoporosis Against Disability (ROAD) study. Methods Of the 3040 participants in the baseline examination of the ROAD study, we enrolled 1773 (699 men, 1074 women) aged 65 years or older who were not certified as in need of care level elderly at baseline. Participants were followed for incident certification of need of care in the LTCI system. Associated factors in the baseline examination with occurrence were determined by multivariate Cox proportional hazards regression analysis. Muscle dysfunction was defined in accordance with the European Working Group on Sarcopenia in Older People algorithm for screening sarcopenia. Results A total of 54 men and 115 women were certified as in need of care level elderly during the average 4.0-year follow up. The incidence was 2.0 and 2.5 per 100 person-years in men and women, respectively. Identified risk factors were region, age, body mass index <18.5 or ≥27.5 kg/m2, grip strength, knee extension torque, usual gait speed, chair stand time and muscle dysfunction. Conclusions Both underweight and obesity, as well as low muscle strength and physical ability, are risk factors for certification of need of care. Considering muscle dysfunction is a risk factor for occurrence, screened individuals are recommended to receive early intervention programs regardless of muscle volume. Geriatr Gerontol Int 2014; 14: 695–701.

67 citations

Journal ArticleDOI
TL;DR: The cut-off points used for muscle mass affect the reported prevalence rates for sarcopenia and, in turn, affect comparability between studies, and changes in gait speed and grip strength had a limited impact on sarc Openia prevalence and on study comparability.
Abstract: The European Working Group on Sarcopenia in Older People (EWGSOP) has proposed different methods and cut-off points for the three parameters that define sarcopenia: muscle mass, muscle strength and physical performance. Although this facilitates clinical practice, it limits comparability between studies and leads to wide differences in published prevalence rates. The aim of this study was to assess how changes in cut-off points for muscle mass, gait speed and grip strength affected sarcopenia prevalence according to EWGSOP criteria. Cross-sectional analysis of elderly individuals recruited from outpatient clinics (n=298) and nursing homes (n=276). We measured muscle mass, grip strength and gait speed and assessed how changes in cut-off points changed sarcopenia prevalence in both populations. An increase from 5.45 kg/m2 to 6.68 kg/m2 in the muscle mass index for female outpatients and nursing-home residents increased sarcopenia prevalence from 4% to 23% and from 9% to 47%, respectively; for men, for an increase from 7.25 kg/m2 to 8.87 kg/m2, the corresponding increases were from 1% to 22% and from 6% to 41%, respectively. Changes in gait speed and grip strength had a limited impact on sarcopenia prevalence. The cut-off points used for muscle mass affect the reported prevalence rates for sarcopenia and, in turn, affect comparability between studies. The main factors influencing the magnitude of the change are muscle mass index distribution in the population and the absolute value of the cut-off points: the same difference between two references (e.g., 7.5 kg/m2 to 7.75 kg/m2 or 7.75 kg/m2 to 8 kg/m2) may produce different changes in prevalence. Changes in cut-off points for gait speed and grip strength had a limited impact on sarcopenia prevalence and on study comparability.

66 citations

01 Jan 2015
TL;DR: In this paper, the authors compare the prevalence of frailty obtained using a uni-and a multidimensional measure, and analyze differences in the functional status among individuals captured as frail or robust by the two measures.
Abstract: Background: Over the years, a plethora of frailty assessment tools has been developed. These instruments can be basically grouped into two types of conceptualizations – unidimensional, based on the physical–biological dimension – and multidimensional, based on the connections among the physical, psychological, and social domains. At present, studies on the comparison between uni- and multidimensional frailty measures are limited. Objective: The aims of this paper were: 1) to compare the prevalence of frailty obtained using a uni- and a multidimensional measure; 2) to analyze differences in the functional status among individuals captured as frail or robust by the two measures; and 3) to investigate relations between the two frailty measures and disability.

63 citations

Related Papers (5)