scispace - formally typeset
Open accessJournal ArticleDOI: 10.1038/S41591-021-01285-X

SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma.

02 Mar 2021-Nature Medicine (Nature Publishing Group)-Vol. 27, Iss: 4, pp 622-625
Abstract: SARS-CoV-2 501Y.V2 (B.1.351), a novel lineage of coronavirus causing COVID-19, contains substitutions in two immunodominant domains of the spike protein. Here, we show that pseudovirus expressing 501Y.V2 spike protein completely escapes three classes of therapeutically relevant antibodies. This pseudovirus also exhibits substantial to complete escape from neutralization, but not binding, by convalescent plasma. These data highlight the prospect of reinfection with antigenically distinct variants and foreshadows reduced efficacy of spike-based vaccines. Substitutions in SARS-CoV-2 spike protein present in the B.1.351 variant first detected in South Africa, when expressed in pseudoviruses, mediate escape from neutralization by monoclonal antibodies under clinical development and by plasma from individuals previously infected with SARS-CoV-2, but do not prevent binding of convalescent plasma to recombinant spike protein containing B.1.351 lineage substitutions.

... read more

Topics: Neutralization (51%)
Citations
  More

596 results found


Open access
Marco Cascella, Michael Rajnik, A. Cuomo1, Scott C. Dulebohn  +1 moreInstitutions (2)
20 Mar 2020-
Abstract: According to the World Health Organization (WHO), viral diseases continue to emerge and represent a serious issue to public health In the last twenty years, several viral epidemics such as the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 to 2003, and H1N1 influenza in 2009, have been recorded Most recently, the Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in Saudi Arabia in 2012 In a timeline that reaches the present day, an epidemic of cases with unexplained low respiratory infections detected in Wuhan, the largest metropolitan area in China's Hubei province, was first reported to the WHO Country Office in China, on December 31, 2019 Published literature can trace the beginning of symptomatic individuals back to the beginning of December 2019 As they were unable to identify the causative agent, these first cases were classified as "pneumonia of unknown etiology " The Chinese Center for Disease Control and Prevention (CDC) and local CDCs organized an intensive outbreak investigation program The etiology of this illness is now attributed to a novel virus belonging to the coronavirus (CoV) family, COVID-19 On February 11, 2020, the WHO Director-General, Dr Tedros Adhanom Ghebreyesus, announced that the disease caused by this new CoV was a "COVID-19," which is the acronym of "coronavirus disease 2019" In the past twenty years, two additional coronavirus epidemics have occurred SARS-CoV provoked a large-scale epidemic beginning in China and involving two dozen countries with approximately 8000 cases and 800 deaths, and the MERS-CoV that began in Saudi Arabia and has approximately 2,500 cases and 800 deaths and still causes as sporadic cases This new virus seems to be very contagious and has quickly spread globally In a meeting on January 30, 2020, per the International Health Regulations (IHR, 2005), the outbreak was declared by the WHO a Public Health Emergency of International Concern (PHEIC) as it had spread to 18 countries with four countries reporting human-to-human transmission An additional landmark occurred on February 26, 2020, as the first case of the disease, not imported from China, was recorded in the United States Initially, the new virus was called 2019-nCoV Subsequently, the task of experts of the International Committee on Taxonomy of Viruses (ICTV) termed it the SARS-CoV-2 virus as it is very similar to the one that caused the SARS outbreak (SARS-CoVs) The CoVs have become the major pathogens of emerging respiratory disease outbreaks They are a large family of single-stranded RNA viruses (+ssRNA) that can be isolated in different animal species For reasons yet to be explained, these viruses can cross species barriers and can cause, in humans, illness ranging from the common cold to more severe diseases such as MERS and SARS Interestingly, these latter viruses have probably originated from bats and then moving into other mammalian hosts — the Himalayan palm civet for SARS-CoV, and the dromedary camel for MERS-CoV — before jumping to humans The dynamics of SARS-Cov-2 are currently unknown, but there is speculation that it also has an animal origin The potential for these viruses to grow to become a pandemic worldwide seems to be a serious public health risk Concerning COVID-19, the WHO raised the threat to the CoV epidemic to the "very high" level, on February 28, 2020 Probably, the effects of the epidemic caused by the new CoV has yet to emerge as the situation is quickly evolving World governments are at work to establish countermeasures to stem possible devastating effects Health organizations coordinate information flows and issues directives and guidelines to best mitigate the impact of the threat At the same time, scientists around the world work tirelessly, and information about the transmission mechanisms, the clinical spectrum of disease, new diagnostics, and prevention and therapeutic strategies are rapidly developing Many uncertainties remain with regard to both the virus-host interac ion and the evolution of the epidemic, with specific reference to the times when the epidemic will reach its peak At the moment, the therapeutic strategies to deal with the infection are only supportive, and prevention aimed at reducing transmission in the community is our best weapon Aggressive isolation measures in China have led to a progressive reduction of cases in the last few days In Italy, in geographic regions of the north of the peninsula, political and health authorities are making incredible efforts to contain a shock wave that is severely testing the health system In the midst of the crisis, the authors have chosen to use the "Statpearls" platform because, within the PubMed scenario, it represents a unique tool that may allow them to make updates in real-time The aim, therefore, is to collect information and scientific evidence and to provide an overview of the topic that will be continuously updated

... read more

Topics: Middle East respiratory syndrome coronavirus (56%), Pandemic (53%), Outbreak (52%) ... show more

1,537 Citations


Open accessJournal ArticleDOI: 10.1038/S41586-021-03398-2
Pengfei Wang1, Manoj S. Nair1, Lihong Liu1, Sho Iketani1  +23 moreInstitutions (4)
08 Mar 2021-Nature
Abstract: The COVID-19 pandemic has had widespread effects across the globe, and its causative agent, SARS-CoV-2, continues to spread. Effective interventions need to be developed to end this pandemic. Single and combination therapies with monoclonal antibodies have received emergency use authorization1-3, and more treatments are under development4-7. Furthermore, multiple vaccine constructs have shown promise8, including two that have an approximately 95% protective efficacy against COVID-199,10. However, these interventions were directed against the initial SARS-CoV-2 virus that emerged in 2019. The recent detection of SARS-CoV-2 variants B.1.1.7 in the UK11 and B.1.351 in South Africa12 is of concern because of their purported ease of transmission and extensive mutations in the spike protein. Here we show that B.1.1.7 is refractory to neutralization by most monoclonal antibodies against the N-terminal domain of the spike protein and is relatively resistant to a few monoclonal antibodies against the receptor-binding domain. It is not more resistant to plasma from individuals who have recovered from COVID-19 or sera from individuals who have been vaccinated against SARS-CoV-2. The B.1.351 variant is not only refractory to neutralization by most monoclonal antibodies against the N-terminal domain but also by multiple individual monoclonal antibodies against the receptor-binding motif of the receptor-binding domain, which is mostly due to a mutation causing an E484K substitution. Moreover, compared to wild-type SARS-CoV-2, B.1.351 is markedly more resistant to neutralization by convalescent plasma (9.4-fold) and sera from individuals who have been vaccinated (10.3-12.4-fold). B.1.351 and emergent variants13,14 with similar mutations in the spike protein present new challenges for monoclonal antibody therapies and threaten the protective efficacy of current vaccines.

... read more

Topics: Monoclonal antibody (56%), Antibody (52%)

748 Citations


Open accessJournal ArticleDOI: 10.1038/S41586-021-03324-6
Zijun Wang1, Fabian Schmidt1, Yiska Weisblum1, Frauke Muecksch1  +32 moreInstitutions (4)
10 Feb 2021-Nature
Abstract: Here we report on the antibody and memory B cell responses of a cohort of 20 volunteers who received the Moderna (mRNA-1273) or Pfizer–BioNTech (BNT162b2) vaccine against SARS-CoV-21–4 Eight weeks after the second injection of vaccine, volunteers showed high levels of IgM and IgG anti-SARS-CoV-2 spike protein (S) and receptor-binding-domain (RBD) binding titre Moreover, the plasma neutralizing activity and relative numbers of RBD-specific memory B cells of vaccinated volunteers were equivalent to those of individuals who had recovered from natural infection5,6 However, activity against SARS-CoV-2 variants that encode E484K-, N501Y- or K417N/E484K/N501-mutant S was reduced by a small—but significant—margin The monoclonal antibodies elicited by the vaccines potently neutralize SARS-CoV-2, and target a number of different RBD epitopes in common with monoclonal antibodies isolated from infected donors5–8 However, neutralization by 14 of the 17 most-potent monoclonal antibodies that we tested was reduced or abolished by the K417N, E484K or N501Y mutation Notably, these mutations were selected when we cultured recombinant vesicular stomatitis virus expressing SARS-CoV-2 S in the presence of the monoclonal antibodies elicited by the vaccines Together, these results suggest that the monoclonal antibodies in clinical use should be tested against newly arising variants, and that mRNA vaccines may need to be updated periodically to avoid a potential loss of clinical efficacy The Moderna (mRNA-1273) and Pfizer–BioNTech (BNT162b2) vaccines elicit anti-RBD antibodies similar to those elicited through natural infection with SARS-CoV-2, but their potent neutralizing activity was reduced or abolished by new viral variants of concern

... read more

Topics: Monoclonal antibody (58%), Antibody (53%), Epitope (52%) ... show more

634 Citations


Open accessJournal ArticleDOI: 10.1016/J.CELL.2021.03.013
29 Apr 2021-Cell
Abstract: Vaccination elicits immune responses capable of potently neutralizing SARS-CoV-2. However, ongoing surveillance has revealed the emergence of variants harboring mutations in spike, the main target of neutralizing antibodies. To understand the impact of these variants, we evaluated the neutralization potency of 99 individuals that received one or two doses of either BNT162b2 or mRNA-1273 vaccines against pseudoviruses representing 10 globally circulating strains of SARS-CoV-2. Five of the 10 pseudoviruses, harboring receptor-binding domain mutations, including K417N/T, E484K, and N501Y, were highly resistant to neutralization. Cross-neutralization of B.1.351 variants was comparable to SARS-CoV and bat-derived WIV1-CoV, suggesting that a relatively small number of mutations can mediate potent escape from vaccine responses. While the clinical impact of neutralization resistance remains uncertain, these results highlight the potential for variants to escape from neutralizing humoral immunity and emphasize the need to develop broadly protective interventions against the evolving pandemic.

... read more

Topics: Vaccination (51%), Humoral immunity (51%), Neutralization (51%)

472 Citations


Open accessJournal ArticleDOI: 10.1056/NEJMOA2101544
Jerald C. Sadoff1, Glenda Gray, An Vandebosch1, Vicky Cardenas1  +26 moreInstitutions (7)
Abstract: Background The Ad26.COV2.S vaccine is a recombinant, replication-incompetent human adenovirus type 26 vector encoding full-length severe acute respiratory syndrome coronavirus 2 (SARS-CoV-...

... read more

471 Citations


References
  More

36 results found


Open accessJournal ArticleDOI: 10.1093/NAR/28.1.235
Abstract: The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.

... read more

30,190 Citations


Open access
01 Jan 2002-
Topics: Molecular graphics (72%)

18,165 Citations


Open accessJournal ArticleDOI: 10.1038/S41586-020-2012-7
Peng Zhou1, Xing-Lou Yang1, Xian Guang Wang2, Ben Hu1  +25 moreInstitutions (3)
03 Feb 2020-Nature
Abstract: Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1–4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5–7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV. Characterization of full-length genome sequences from patients infected with a new coronavirus (2019-nCoV) shows that the sequences are nearly identical and indicates that the virus is related to a bat coronavirus.

... read more

Topics: Coronavirus (67%), Betacoronavirus (54%), Deltacoronavirus (51%) ... show more

12,056 Citations


Open accessJournal ArticleDOI: 10.1016/J.CELL.2020.02.058
16 Apr 2020-Cell
Abstract: The emergence of SARS-CoV-2 has resulted in >90,000 infections and >3,000 deaths. Coronavirus spike (S) glycoproteins promote entry into cells and are the main target of antibodies. We show that SARS-CoV-2 S uses ACE2 to enter cells and that the receptor-binding domains of SARS-CoV-2 S and SARS-CoV S bind with similar affinities to human ACE2, correlating with the efficient spread of SARS-CoV-2 among humans. We found that the SARS-CoV-2 S glycoprotein harbors a furin cleavage site at the boundary between the S1/S2 subunits, which is processed during biogenesis and sets this virus apart from SARS-CoV and SARS-related CoVs. We determined cryo-EM structures of the SARS-CoV-2 S ectodomain trimer, providing a blueprint for the design of vaccines and inhibitors of viral entry. Finally, we demonstrate that SARS-CoV S murine polyclonal antibodies potently inhibited SARS-CoV-2 S mediated entry into cells, indicating that cross-neutralizing antibodies targeting conserved S epitopes can be elicited upon vaccination.

... read more

Topics: Ectodomain (56%), Viral entry (55%), Epitope (53%) ... show more

4,968 Citations


Open accessJournal ArticleDOI: 10.1016/J.CELL.2020.06.043
20 Aug 2020-Cell
Abstract: A SARS-CoV-2 variant carrying the Spike protein amino acid change D614G has become the most prevalent form in the global pandemic. Dynamic tracking of variant frequencies revealed a recurrent pattern of G614 increase at multiple geographic levels: national, regional, and municipal. The shift occurred even in local epidemics where the original D614 form was well established prior to introduction of the G614 variant. The consistency of this pattern was highly statistically significant, suggesting that the G614 variant may have a fitness advantage. We found that the G614 variant grows to a higher titer as pseudotyped virions. In infected individuals, G614 is associated with lower RT-PCR cycle thresholds, suggestive of higher upper respiratory tract viral loads, but not with increased disease severity. These findings illuminate changes important for a mechanistic understanding of the virus and support continuing surveillance of Spike mutations to aid with development of immunological interventions.

... read more

2,165 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20223
2021589
20204