scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Savanna woody encroachment is widespread across three continents

TL;DR: It is argued that the functional traits of each woody flora, specifically the N-fixing ability and architecture of woody plants, are critical to predicting encroachment over the next century and that African savannas are at high risk of widespread vegetation change.
Abstract: Tropical savannas are a globally extensive biome prone to rapid vegetation change in response to changing environmental conditions. Via a meta-analysis, we quantified savanna woody vegetation change spanning the last century. We found a global trend of woody encroachment that was established prior the 1980s. However, there is critical regional variation in the magnitude of encroachment. Woody cover is increasing most rapidly in the remaining uncleared savannas of South America, most likely due to fire suppression and land fragmentation. In contrast, Australia has experienced low rates of encroachment. When accounting for land use, African savannas have a mean rate annual woody cover increase two and a half times that of Australian savannas. In Africa, encroachment occurs across multiple land uses and is accelerating over time. In Africa and Australia, rising atmospheric CO2, changing land management and rainfall are likely causes. We argue that the functional traits of each woody flora, specifically the N-fixing ability and architecture of woody plants, are critical to predicting encroachment over the next century and that African savannas are at high risk of widespread vegetation change.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
25 Jul 2018-Nature
TL;DR: The immense biodiversity of tropical ecosystems is threatened by multiple interacting local and global stressors that can only be addressed by the concerted efforts of grassroots organizations, researchers, national governments and the international community.
Abstract: The tropics contain the overwhelming majority of Earth's biodiversity: their terrestrial, freshwater and marine ecosystems hold more than three-quarters of all species, including almost all shallow-water corals and over 90% of terrestrial birds However, tropical ecosystems are also subject to pervasive and interacting stressors, such as deforestation, overfishing and climate change, and they are set within a socio-economic context that includes growing pressure from an increasingly globalized world, larger and more affluent tropical populations, and weak governance and response capacities Concerted local, national and international actions are urgently required to prevent a collapse of tropical biodiversity

402 citations

01 Dec 2004
TL;DR: In this paper, the authors search the literature for a common set of variables that might be combined into an index to quantify the greenness of vegetation throughout the year, such as daylength (photoperiod), evaporative demand (vapor pressure deficit), and suboptimal (minimum) temperatures.
Abstract: The phenological state of vegetation significantly affects exchanges of heat, mass, and momentum between the Earth's surface and the atmosphere. Although current patterns can be estimated from satellites, we lack the ability to predict future trends in response to climate change. We searched the literature for a common set of variables that might be combined into an index to quantify the greenness of vegetation throughout the year. We selected as variables: daylength (photoperiod), evaporative demand (vapor pressure deficit), and suboptimal (minimum) temperatures. For each variable we set threshold limits, within which the relative phenological performance of the vegetation was assumed to vary from inactive (0) to unconstrained (1). A combined Growing Season Index (GSI) was derived as the product of the three indices. Ten-day mean GSI values for nine widely dispersed ecosystems showed good agreement (r>0.8) with the satellite-derived Normalized Difference Vegetation Index (NDVI). We also tested the model at a temperate deciduous forest by comparing model estimates with average field observations of leaf flush and leaf coloration. The mean absolute error of predictions at this site was 3 days for average leaf flush dates and 2 days for leaf coloration dates. Finally, we used this model to produce a global map that distinguishes major differences in regional phenological controls. The model appears sufficiently robust to reconstruct historical variation as well as to forecast future phenological responses to changing climatic conditions.

366 citations

Book ChapterDOI
01 Jan 2017
TL;DR: In this article, the authors review the process of woody plant encroachment and its causes, the consequences for ecosystem function and the provision of services, and the effectiveness of management interventions aimed at reducing woody cover.
Abstract: Woody vegetation in grasslands and savannas has increased worldwide over the past 100–200 years. This phenomenon of “woody plant encroachment” (WPE) has been documented to occur at different times but at comparable rates in rangelands of the Americas, Australia, and southern Africa. The objectives of this chapter are to review (1) the process of WPE and its causes, (2) consequences for ecosystem function and the provision of services, and (3) the effectiveness of management interventions aimed at reducing woody cover. Explanations for WPE require consideration of multiple interacting drivers and constraints and their variation through time at a given site. Mean annual precipitation sets an upper limit to woody plant cover, but local patterns of disturbance (fire, browsing) and soil properties (texture, depth) prevent the realization of this potential. In the absence of these constraints, seasonality, interannual variation, and intensity of precipitation events determine the rate and extent of woody plant expansion. Although probably not a triggering factor, rising atmospheric CO2 levels may have favored C3 woody plant growth. WPE coincided with the global intensification of livestock grazing that by reducing fine fuels, hence fire frequency and intensity, facilitated WPE. From a conservation perspective, WPE threatens the maintenance of grassland and savanna ecosystems and its endemic biodiversity. Traditional management goals aimed at restoring forage and livestock production after WPE have broadened to support a more diverse portfolio of ecosystem services. Accordingly, we focus on how WPE and management actions aimed at reducing woody plant cover influence carbon sequestration, water yield, and biodiversity, and discuss the trade-offs involved when balancing competing management objectives.

349 citations


Cites background from "Savanna woody encroachment is wides..."

  • ...…forest-savanna boundaries in Africa, Australia, and South America are comparable to those observed in North America (range = 0.1–1.1 % cover year−1, Stevens et al. 2016), though maximum rates reported in their synthesis were much lower than those reported by Barger et al. (2011) for North…...

    [...]

Journal ArticleDOI
TL;DR: Fire suppression resulted in increased carbon stocks but was associated with acute species loss and Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined, highlighting the important role of fire in maintaining biodiversity in tropical savannas.
Abstract: Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. Fire suppression resulted in increased carbon stocks of 1.2 Mg ha −1 year −1 since 1986 but was associated with acute species loss. In sites fully encroached by forest, plant species richness declined by 27%, and ant richness declined by 35%. Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined by 67% for plants and 86% for ants. This loss highlights the important role of fire in maintaining biodiversity in tropical savannas, a role that is not reflected in current policies of fire suppression throughout the Brazilian Cerrado. In tropical grasslands and savannas throughout the tropics, carbon mitigation programs that promote forest cover cannot be assumed to provide net benefits for conservation.

242 citations

Journal ArticleDOI
TL;DR: It is reported that woody vegetation cover over sub-Saharan Africa increased by 8% over the past three decades and that a diversity of drivers, other than CO2, were able to explain 78% of the spatial variation in this trend.
Abstract: While global deforestation induced by human land use has been quantified, the drivers and extent of simultaneous woody plant encroachment (WPE) into open areas are only regionally known. WPE has important consequences for ecosystem functioning, global carbon balances and human economies. Here we report, using high-resolution satellite imagery, that woody vegetation cover over sub-Saharan Africa increased by 8% over the past three decades and that a diversity of drivers, other than CO2, were able to explain 78% of the spatial variation in this trend. A decline in burned area along with warmer, wetter climates drove WPE, although this has been mitigated in areas with high population growth rates, and high and low extremes of herbivory, specifically browsers. These results confirm global greening trends, thereby bringing into question widely held theories about declining terrestrial carbon balances and desert expansion. Importantly, while global drivers such as climate and CO2 may enhance the risk of WPE, managing fire and herbivory at the local scale provides tools to mitigate continental WPE.

186 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors developed interpolated climate surfaces for global land areas (excluding Antarctica) at a spatial resolution of 30 arc s (often referred to as 1-km spatial resolution).
Abstract: We developed interpolated climate surfaces for global land areas (excluding Antarctica) at a spatial resolution of 30 arc s (often referred to as 1-km spatial resolution). The climate elements considered were monthly precipitation and mean, minimum, and maximum temperature. Input data were gathered from a variety of sources and, where possible, were restricted to records from the 1950–2000 period. We used the thin-plate smoothing spline algorithm implemented in the ANUSPLIN package for interpolation, using latitude, longitude, and elevation as independent variables. We quantified uncertainty arising from the input data and the interpolation by mapping weather station density, elevation bias in the weather stations, and elevation variation within grid cells and through data partitioning and cross validation. Elevation bias tended to be negative (stations lower than expected) at high latitudes but positive in the tropics. Uncertainty is highest in mountainous and in poorly sampled areas. Data partitioning showed high uncertainty of the surfaces on isolated islands, e.g. in the Pacific. Aggregating the elevation and climate data to 10 arc min resolution showed an enormous variation within grid cells, illustrating the value of high-resolution surfaces. A comparison with an existing data set at 10 arc min resolution showed overall agreement, but with significant variation in some regions. A comparison with two high-resolution data sets for the United States also identified areas with large local differences, particularly in mountainous areas. Compared to previous global climatologies, ours has the following advantages: the data are at a higher spatial resolution (400 times greater or more); more weather station records were used; improved elevation data were used; and more information about spatial patterns of uncertainty in the data is available. Owing to the overall low density of available climate stations, our surfaces do not capture of all variation that may occur at a resolution of 1 km, particularly of precipitation in mountainous areas. In future work, such variation might be captured through knowledgebased methods and inclusion of additional co-variates, particularly layers obtained through remote sensing. Copyright  2005 Royal Meteorological Society.

17,977 citations


"Savanna woody encroachment is wides..." refers methods in this paper

  • ...From each study, we compiled site latitude and longitude and used this information to compile climatic information from WorldClim (Hijmans et al., 2005)....

    [...]

Journal ArticleDOI
TL;DR: Understanding of the widely observed increase in tree biomass following introduction of commercial ranching into savannas requires inclusion of interactions among browsers, grazers, and fires, and their effects on tree recruitment.
Abstract: Savannas occur where trees and grasses interact to create a biome that is neither grassland nor forest. Woody and gramineous plants interact by many mechanisms, some negative (competition) and some positive (facilitation). The strength and sign of the interaction varies in both time and space, allowing a rich array of possible outcomes but no universal predictive model. Simple models of coexistence of trees and grasses, based on separation in rooting depth, are theoretically and experimentally inadequate. Explanation of the widely observed increase in tree biomass following introduction of commercial ranching into savannas requires inclusion of interactions among browsers, grazers, and fires, and their effects on tree recruitment. Prediction of the consequences of manipulating tree biomass through clearing further requires an understanding of how trees modify light, water, and nutrient environments of grasses. Understanding the nature of coexistence between trees and grass, which under other circumstances...

2,436 citations


"Savanna woody encroachment is wides..." refers background in this paper

  • ...However, savannas are also home to 20% of the Earth’s population and the majority of rangelands and livestock (Scholes & Archer, 1997)....

    [...]

Journal ArticleDOI
Abstract: I Genesis, God blesses human beings and bids us to take dominion over the fish in the sea, the birds in the air, and every other living thing. We are entreated to be fruitful and multiply, to fill the earth, and subdue it (Gen. 1:28). The bad news, and the good news, is that we have almost succeeded. There is little debate in scientific circles about the importance of human influence on ecosystems. According to scientists’ reports, we appropriate over 40% of the net primary productivity (the green material) produced on Earth each year (Vitousek et al. 1986, Rojstaczer et al. 2001). We consume 35% of the productivity of the oceanic shelf (Pauly and Christensen 1995), and we use 60% of freshwater run-off (Postel et al. 1996). The unprecedented escalation in both human population and consumption in the 20th century has resulted in environmental crises never before encountered in the history of humankind and the world (McNeill 2000). E. O. Wilson (2002) claims it would now take four Earths to meet the consumption demands of the current human population, if every human consumed at the level of the average US inhabitant. The influence of human beings on the planet has become so pervasive that it is hard to find adults in any country who have not seen the environment around them reduced in natural values during their lifetimes—woodlots converted to agriculture, agricultural lands converted to suburban development, suburban development converted to urban areas. The cumulative effect of these many local changes is the global phenomenon of human influence on nature, a new geological epoch some call the “anthropocene” (Steffen and Tyson 2001). Human influence is arguably the most important factor affecting life of all kinds in today’s world (Lande 1998, Terborgh 1999, Pimm 2001, UNEP 2001). Yet despite the broad consensus among biologists about the importance of human influence on nature, this phenomenon and its implications are not fully appreciated by the larger human community, which does not recognize them in its economic systems (Hall et al. 2001) or in most of its political decisions (Soulé and Terborgh 1999, Chapin et al. 2000). In part, this lack of appreciation may be due to scientists’ propensity to express themselves in terms like “appropriation of net primary productivity” or “exponential population growth,” abstractions that require some training to understand. It may be due to historical assumptions about and habits inherited from times when human beings, as a group, had dramatically less influence on the biosphere. Now the individual deci-

2,125 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a simple approach to derive geographically explicit changes in global croplands from 1700 to 1992, by calibrating a remotely sensed land cover classification data set against cropland inventory data.
Abstract: Human activities over the last three centuries have significantly transformed the Earth's environment, primarily through the conversion of natural ecosystems to agriculture. This study presents a simple approach to derive geographically explicit changes in global croplands from 1700 to 1992. By calibrating a remotely sensed land cover classification data set against cropland inventory data, we derived a global representation of permanent croplands in 1992, at 5 min spatial resolution [Ramankutty and Foley, 1998]. To reconstruct historical croplands, we first compile an extensive database of historical cropland inventory data, at the national and subnational level, from a variety of sources. Then we use our 1992 cropland data within a simple land cover change model, along with the historical inventory data, to reconstruct global 5 min resolution data on permanent cropland areas from 1992 back to 1700. The reconstructed changes in historical croplands are consistent with the history of human settlement and patterns of economic development. By overlaying our historical cropland data set over a newly derived potential vegetation data set, we analyze our results in terms of the extent to which different natural vegetation types have been converted for agriculture. We further examine the extent to which croplands have been abandoned in different parts of the world. Our data sets could be used within global climate models and global ecosystem models to understand the impacts of land cover change on climate and on the cycling of carbon and water. Such an analysis is a crucial aid to sharpen our thinking about a sustainable future.

1,765 citations


"Savanna woody encroachment is wides..." refers background in this paper

  • ...This is congruent with the encroachment rates responding to an increasing intensity of a global driver, most likely increasing atmospheric [CO2], increasing land-use intensity and increasing disruption of fire and mega-herbivory (Ramankutty & Foley, 1999; Archibald et al., 2013)....

    [...]

Journal ArticleDOI
08 Dec 2005-Nature
TL;DR: It is shown, using data from 854 sites across Africa, that maximum woody cover in savannas receiving a mean annual precipitation (MAP) of less than ∼650 mm is constrained by, and increases linearly with, MAP.
Abstract: Savannas are globally important ecosystems of great significance to human economies. In these biomes, which are characterized by the co-dominance of trees and grasses, woody cover is a chief determinant of ecosystem properties1–3. The availability of resources (water, nutrients) and disturbance regimes (fire, herbivory) are thought to be important in regulating woody cover1,2,4,5, but perceptions differ on which of these are the primary drivers of savanna structure. Here we show, using data from 854 sites across Africa, that maximum woody cover in savannas receiving a mean annual precipitation (MAP) of less than ,650mm is constrained by, and increases linearly with, MAP. These arid and semi-arid savannas may be considered ‘stable' systems in which water constrains woody cover and permits grasses to coexist, while fire, herbivory and soil properties interact to reduce woody cover below the MAP-controlled upper bound. Above a MAP of ,650mm, savannas are ‘unstable' systems in which MAP is sufficient for woody canopy closure, and disturbances (fire, herbivory) are required for the coexistence of trees and grass. These results provide insights into the nature of African savannas and suggest that future changes in precipitation6 may considerably affect their distribution and dynamics.

1,740 citations


"Savanna woody encroachment is wides..." refers background in this paper

  • ...Water availability is however a key constraint on savanna net primary productivity and maximum woody cover (Sankaran et al., 2005; Staver et al., 2011)....

    [...]

  • ...AC, annual rate of change, CONT, continent, SY, starting year, IC, initial cover, T = duration, MAP, mean annual precipitation....

    [...]

  • ...Mean annual precipitation (MAP) was a covariate given that both mean woody cover and potential woody cover increase with MAP (Jolly et al., 2005; Sankaran et al., 2005; Lehmann et al., 2014)....

    [...]

  • ...We did this to test the effect of variables, specifically MAP, without confounding MAP and continent as the available rainfall range varies strongly between continents (Lehmann et al., 2011)....

    [...]