scispace - formally typeset
Journal ArticleDOI: 10.1080/07370024.2018.1512414

Scaffolding the Mastery of Healthy Behaviors with Fittle+ Systems: Evidence-Based Interventions and Theory

04 Mar 2021-Human-Computer Interaction (Taylor & Francis)-Vol. 36, Iss: 2, pp 73-106
Abstract: We present a series of mHealth applications and studies pursued as part of the Fittle+ project. This program of research has the dual aims of (1) bringing scalable evidence-based behavior-change in...

... read more

Topics: mHealth (51%)
Citations
  More

7 results found


Open accessJournal ArticleDOI: 10.2196/16299
Abstract: Background: Multiple types of mobile health (mHealth) technologies are available, such as smartphone health apps, fitness trackers, and digital medical devices. However, despite their availability, some individuals do not own, do not realize they own, or own but do not use these technologies. Others may use mHealth devices, but their use varies in tracking health, behaviors, and goals. Examining patterns of mHealth use at the population level can advance our understanding of technology use for health and behavioral tracking. Moreover, investigating sociodemographic and health-related correlates of these patterns can provide direction to researchers about how to target mHealth interventions for diverse audiences. Objective: The aim of this study was to identify patterns of mHealth use for health and behavioral tracking in the US adult population and to characterize the population according to those patterns. Methods: We combined data from the 2017 and 2018 National Cancer Institute Health Information National Trends Survey (N=6789) to characterize respondents according to 5 mutually exclusive reported patterns of mHealth use for health and behavioral tracking: (1) mHealth nonowners and nonusers report not owning or using devices to track health, behaviors, or goals; (2) supertrackers track health or behaviors and goals using a smartphone or tablet plus other devices (eg, Fitbit); (3) app trackers use only a smartphone or tablet; (4) device trackers use only nonsmartphone or nontablet devices and do not track goals; and (5) nontrackers report having smartphone or tablet health apps but do not track health, behaviors, or goals. Results: Being in the mHealth nonowners and nonusers category (vs all mHealth owners and users) is associated with males, older age, lower income, and not being a health information seeker. Among mHealth owners and users, characteristics of device trackers and supertrackers were most distinctive. Compared with supertrackers, device trackers have higher odds of being male (odds ratio [OR] 2.22, 95% CI 1.55-3.19), older age (vs 18-34 years; 50-64 years: OR 2.83, 95% CI 1.52-5.30; 65+ years: OR 6.28, 95% CI 3.35-11.79), have an annual household income of US $20,000 to US $49,999 (vs US $75,000+: OR 2.31, 95% CI 1.36-3.91), and have a chronic condition (OR 1.69, 95% CI 1.14-2.49). Device trackers also have higher odds of not being health information seekers than supertrackers (OR 2.98, 95% CI 1.66-5.33). Conclusions: Findings revealed distinctive sociodemographic and health-related characteristics of the population by pattern of mHealth use, with notable contrasts between those who do and do not use devices to track goals. Several characteristics of individuals who track health or behaviors but not goals (device trackers) are similar to those of mHealth nonowners and nonusers. Our results suggest patterns of mHealth use may inform how to target mHealth interventions to enhance reach and facilitate healthy behaviors.

... read more

Topics: mHealth (69%), Health Information National Trends Survey (53%), Population health (53%) ... read more

11 Citations


Book ChapterDOI: 10.1007/978-3-030-38825-6_2
Peter Pirolli1Institutions (1)
01 Jan 2020-
Abstract: Advances in computational cognitive psychology have played an important role in understanding and engineering human–information interaction systems. These computational models include several addressing the cognition involved in the human sensemaking process, user models that capture the knowledge that humans acquire from interaction, and how people judge the credibility of online Twitter users who influence decision-making. The models presented in this chapter build on earlier information foraging models in which it is important to model individual-level knowledge and experience because these clearly influence human–information interaction processes. This chapter concludes with a discussion of challenges to computational cognitive models as digital information interaction becomes increasingly pervasive and complex.

... read more

Topics: Sensemaking (58%), Information foraging (58%), Cognition (55%) ... read more

1 Citations


Open accessJournal ArticleDOI: 10.2196/26315
Abstract: Background: Traditional psychological theories are inadequate to fully leverage the potential of smartphones and improve the effectiveness of physical activity (PA) and sedentary behavior (SB) change interventions. Future interventions need to consider dynamic models taken from other disciplines, such as engineering (eg, control systems). The extent to which such dynamic models have been incorporated in the development of interventions for PA and SB remains unclear. Objective: This review aims to quantify the number of studies that have used dynamic models to develop smartphone-based interventions to promote PA and reduce SB, describe their features, and evaluate their effectiveness where possible. Methods: Databases including PubMed, PsycINFO, IEEE Xplore, Cochrane, and Scopus were searched from inception to May 15, 2019, using terms related to mobile health, dynamic models, SB, and PA. The included studies involved the following: PA or SB interventions involving human adults; either developed or evaluated integrated psychological theory with dynamic theories; used smartphones for the intervention delivery; the interventions were adaptive or just-in-time adaptive; included randomized controlled trials (RCTs), pilot RCTs, quasi-experimental, and pre-post study designs; and were published from 2000 onward. Outcomes included general characteristics, dynamic models, theory or construct integration, and measured SB and PA behaviors. Data were synthesized narratively. There was limited scope for meta-analysis because of the variability in the study results. Results: A total of 1087 publications were screened, with 11 publications describing 8 studies included in the review. All studies targeted PA; 4 also included SB. Social cognitive theory was the major psychological theory upon which the studies were based. Behavioral intervention technology, control systems, computational agent model, exploit-explore strategy, behavioral analytic algorithm, and dynamic decision network were the dynamic models used in the included studies. The effectiveness of quasi-experimental studies involved reduced SB (1 study; P=.08), increased light PA (1 study; P=.002), walking steps (2 studies; P=.06 and P<.001), walking time (1 study; P=.02), moderate-to-vigorous PA (2 studies; P=.08 and P=.81), and nonwalking exercise time (1 study; P=.31). RCT studies showed increased walking steps (1 study; P=.003) and walking time (1 study; P=.06). To measure activity, 5 studies used built-in smartphone sensors (ie, accelerometers), 3 of which used the phone’s GPS, and 3 studies used wearable activity trackers. Conclusions: To our knowledge, this is the first systematic review to report on smartphone-based studies to reduce SB and promote PA with a focus on integrated dynamic models. These findings highlight the scarcity of dynamic model–based smartphone studies to reduce SB or promote PA. The limited number of studies that incorporate these models shows promising findings. Future research is required to assess the effectiveness of dynamic models in promoting PA and reducing SB. Trial Registration: International Prospective Register of Systematic Reviews (PROSPERO) CRD42020139350; https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=139350.

... read more

Topics: Systematic review (50%), Activity tracker (50%)

Open accessPosted Content
01 Oct 2020-arXiv: Learning
Abstract: Unhealthy behaviors, e.g., physical inactivity and unhealthful food choice, are the primary healthcare cost drivers in developed countries. Pervasive computational, sensing, and communication technology provided by smartphones and smartwatches have made it possible to support individuals in their everyday lives to develop healthier lifestyles. In this paper, we propose an exercise recommendation system that also predicts individual success rates . The system, consisting of two inter-connected recurrent neural networks (RNNs), uses the history of workouts to recommend the next workout activity for each individual. The system then predicts the probability of successful completion of the predicted activity by the individual. The prediction accuracy of this interconnected-RNN model is assessed on previously published data from a four-week mobile health experiment and is shown to improve upon previous predictions from a computational cognitive model.

... read more

Topics: Cognitive model (53%)

Open accessProceedings ArticleDOI: 10.1109/ICDH52753.2021.00027
01 Sep 2021-
Abstract: Unhealthy behaviors, e.g., physical inactivity and unhealthful food choice, are the primary healthcare cost drivers in developed countries. Pervasive computational, sensing, and communication technology provided by smartphones and smart-watches have made it possible to support individuals in their everyday lives to develop healthier lifestyles. In this paper, we propose an exercise recommendation system that also predicts individual success rates. The system, consisting of two interconnected recurrent neural networks (RNNs), uses the history of workouts to recommend the next workout activity for each individual. The system then predicts the probability of successful completion of the predicted activity by the individual. The prediction accuracy of this interconnected-RNN model is assessed on previously published data from a four-week mobile health experiment and is shown to improve upon previous predictions from a computational cognitive model.

... read more

Topics: Cognitive model (54%)

References
  More

80 results found


Journal ArticleDOI: 10.1016/0749-5978(91)90020-T
Icek Ajzen1Institutions (1)
Abstract: Research dealing with various aspects of* the theory of planned behavior (Ajzen, 1985, 1987) is reviewed, and some unresolved issues are discussed. In broad terms, the theory is found to be well supported by empirical evidence. Intentions to perform behaviors of different kinds can be predicted with high accuracy from attitudes toward the behavior, subjective norms, and perceived behavioral control; and these intentions, together with perceptions of behavioral control, account for considerable variance in actual behavior. Attitudes, subjective norms, and perceived behavioral control are shown to be related to appropriate sets of salient behavioral, normative, and control beliefs about the behavior, but the exact nature of these relations is still uncertain. Expectancy— value formulations are found to be only partly successful in dealing with these relations. Optimal rescaling of expectancy and value measures is offered as a means of dealing with measurement limitations. Finally, inclusion of past behavior in the prediction equation is shown to provide a means of testing the theory*s sufficiency, another issue that remains unresolved. The limited available evidence concerning this question shows that the theory is predicting behavior quite well in comparison to the ceiling imposed by behavioral reliability. © 1991 Academic Press. Inc.

... read more

Topics: Theory of planned behavior (64%), Reasoned action approach (62%), Expectancy theory (60%) ... read more

55,422 Citations


Journal ArticleDOI: 10.1348/014466601164939
Christopher J. Armitage1, Mark Conner2Institutions (2)
Abstract: The Theory of Planned Behaviour (TPB) has received considerable attention in the literature. The present study is a quantitative integration and review of that research. From a database of 185 independent studies published up to the end of 1997, the TPB accounted for 27% and 39% of the variance in behaviour and intention, respectively. The perceived behavioural control (PBC) construct accounted for significant amounts of variance in intention and behaviour, independent of theory of reasoned action variables. When behaviour measures were self-reports, the TPB accounted for 11% more of the variance in behaviour than when behaviour measures were objective or observed (R2s = .31 and .21, respectively). Attitude, subjective norm and PBC account for significantly more of the variance in individuals' desires than intentions or self-predictions, but intentions and self-predictions were better predictors of behaviour. The subjective norm construct is generally found to be a weak predictor of intentions. This is partly attributable to a combination of poor measurement and the need for expansion of the normative component. The discussion focuses on ways in which current TPB research can be taken forward in the light of the present review.

... read more

8,044 Citations



Open accessJournal ArticleDOI: 10.1037/0003-066X.54.7.493
Abstract: When people encounter problems in translating their goals into action (e.g., failing to get started, becoming distracted, or falling into bad habits), they may strategically call on automatic processes in an attempt to secure goal attainment. This can be achieved by plans in the form of implementation intentions that link anticipated critical situations to goal-directed responses ("Whenever situation x arises, I will initiate the goal-directed response y!"). Implementation intentions delegate the control of goal-directed responses to anticipated situational cues, which (when actually encountered) elicit these responses automatically. A program of research demonstrates that implementation intentions further the attainment of goals, and it reveals the underlying processes.

... read more

Topics: Implementation intention (64%)

4,291 Citations


Journal ArticleDOI: 10.1037/0033-295X.89.4.369
John R. Anderson1Institutions (1)
Abstract: A framework for skill acquisition is proposed that includes two major stages in the development of a cognitive skill: a declarative stage in which facts about the skill domain are interpreted and a procedural stage in which the domain knowledge is directly embodied in procedures for performing the skill. This general framework has been instantiated in the ACT system in which facts are encoded in a propositional network and procedures are encoded as productions. Knowledge compilation is the process by which the skill transits from the declarative stage to the procedural stage. It consists of the subprocesses of composition, which collapses sequences of productions into single productions, and proceduralization, which embeds factual knowledge into productions. Once proceduralized, further learning processes operate on the skill to make the productions more selective in their range of applications. These processes include generalization, discrimination, and strengthening of productions. Comparisons are made to similar concepts from past learning theories. How these learning mechanisms apply to produce the power law speedup in processing time with practice is discussed.

... read more

Topics: Sequence learning (55%), Dreyfus model of skill acquisition (54%), Domain knowledge (51%) ... read more

3,477 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20213
20203
20191