scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Scalable Recognition with a Vocabulary Tree

17 Jun 2006-Vol. 2, pp 2161-2168
TL;DR: A recognition scheme that scales efficiently to a large number of objects and allows a larger and more discriminatory vocabulary to be used efficiently is presented, which it is shown experimentally leads to a dramatic improvement in retrieval quality.
Abstract: A recognition scheme that scales efficiently to a large number of objects is presented. The efficiency and quality is exhibited in a live demonstration that recognizes CD-covers from a database of 40000 images of popular music CD’s. The scheme builds upon popular techniques of indexing descriptors extracted from local regions, and is robust to background clutter and occlusion. The local region descriptors are hierarchically quantized in a vocabulary tree. The vocabulary tree allows a larger and more discriminatory vocabulary to be used efficiently, which we show experimentally leads to a dramatic improvement in retrieval quality. The most significant property of the scheme is that the tree directly defines the quantization. The quantization and the indexing are therefore fully integrated, essentially being one and the same. The recognition quality is evaluated through retrieval on a database with ground truth, showing the power of the vocabulary tree approach, going as high as 1 million images.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations


Additional excerpts

  • ...[16, 17, 28, 18])....

    [...]

Book ChapterDOI
07 May 2006
TL;DR: A novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Robust Features), which approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster.
Abstract: In this paper, we present a novel scale- and rotation-invariant interest point detector and descriptor, coined SURF (Speeded Up Robust Features). It approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster. This is achieved by relying on integral images for image convolutions; by building on the strengths of the leading existing detectors and descriptors (in casu, using a Hessian matrix-based measure for the detector, and a distribution-based descriptor); and by simplifying these methods to the essential. This leads to a combination of novel detection, description, and matching steps. The paper presents experimental results on a standard evaluation set, as well as on imagery obtained in the context of a real-life object recognition application. Both show SURF's strong performance.

13,011 citations

Journal ArticleDOI
TL;DR: A novel scale- and rotation-invariant detector and descriptor, coined SURF (Speeded-Up Robust Features), which approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster.
Abstract: This article presents a novel scale- and rotation-invariant detector and descriptor, coined SURF (Speeded-Up Robust Features). SURF approximates or even outperforms previously proposed schemes with respect to repeatability, distinctiveness, and robustness, yet can be computed and compared much faster. This is achieved by relying on integral images for image convolutions; by building on the strengths of the leading existing detectors and descriptors (specifically, using a Hessian matrix-based measure for the detector, and a distribution-based descriptor); and by simplifying these methods to the essential. This leads to a combination of novel detection, description, and matching steps. The paper encompasses a detailed description of the detector and descriptor and then explores the effects of the most important parameters. We conclude the article with SURF's application to two challenging, yet converse goals: camera calibration as a special case of image registration, and object recognition. Our experiments underline SURF's usefulness in a broad range of topics in computer vision.

12,449 citations


Cites methods from "Scalable Recognition with a Vocabul..."

  • ...Methods include the best-binfirst proposed by Lowe [24], balltrees [35], vocabulary trees [34], locality sensitive hashing [9], or redundant bit vectors [13]....

    [...]

Proceedings ArticleDOI
06 Nov 2011
TL;DR: This paper proposes a very fast binary descriptor based on BRIEF, called ORB, which is rotation invariant and resistant to noise, and demonstrates through experiments how ORB is at two orders of magnitude faster than SIFT, while performing as well in many situations.
Abstract: Feature matching is at the base of many computer vision problems, such as object recognition or structure from motion. Current methods rely on costly descriptors for detection and matching. In this paper, we propose a very fast binary descriptor based on BRIEF, called ORB, which is rotation invariant and resistant to noise. We demonstrate through experiments how ORB is at two orders of magnitude faster than SIFT, while performing as well in many situations. The efficiency is tested on several real-world applications, including object detection and patch-tracking on a smart phone.

8,702 citations


Cites background or methods from "Scalable Recognition with a Vocabul..."

  • ...LSH also gives more flexibility with regard to accuracy, which can be interesting in bag-of-feature approaches [21, 27]....

    [...]

  • ...Visual vocabulary methods [21, 27] use offline clustering to find exemplars that are uncorrelated and can be used in matching....

    [...]

Journal ArticleDOI
TL;DR: ORB-SLAM as discussed by the authors is a feature-based monocular SLAM system that operates in real time, in small and large indoor and outdoor environments, with a survival of the fittest strategy that selects the points and keyframes of the reconstruction.
Abstract: This paper presents ORB-SLAM, a feature-based monocular simultaneous localization and mapping (SLAM) system that operates in real time, in small and large indoor and outdoor environments. The system is robust to severe motion clutter, allows wide baseline loop closing and relocalization, and includes full automatic initialization. Building on excellent algorithms of recent years, we designed from scratch a novel system that uses the same features for all SLAM tasks: tracking, mapping, relocalization, and loop closing. A survival of the fittest strategy that selects the points and keyframes of the reconstruction leads to excellent robustness and generates a compact and trackable map that only grows if the scene content changes, allowing lifelong operation. We present an exhaustive evaluation in 27 sequences from the most popular datasets. ORB-SLAM achieves unprecedented performance with respect to other state-of-the-art monocular SLAM approaches. For the benefit of the community, we make the source code public.

4,522 citations

References
More filters
Journal ArticleDOI
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

46,906 citations

Journal ArticleDOI
TL;DR: It is observed that the ranking of the descriptors is mostly independent of the interest region detector and that the SIFT-based descriptors perform best and Moments and steerable filters show the best performance among the low dimensional descriptors.
Abstract: In this paper, we compare the performance of descriptors computed for local interest regions, as, for example, extracted by the Harris-Affine detector [Mikolajczyk, K and Schmid, C, 2004]. Many different descriptors have been proposed in the literature. It is unclear which descriptors are more appropriate and how their performance depends on the interest region detector. The descriptors should be distinctive and at the same time robust to changes in viewing conditions as well as to errors of the detector. Our evaluation uses as criterion recall with respect to precision and is carried out for different image transformations. We compare shape context [Belongie, S, et al., April 2002], steerable filters [Freeman, W and Adelson, E, Setp. 1991], PCA-SIFT [Ke, Y and Sukthankar, R, 2004], differential invariants [Koenderink, J and van Doorn, A, 1987], spin images [Lazebnik, S, et al., 2003], SIFT [Lowe, D. G., 1999], complex filters [Schaffalitzky, F and Zisserman, A, 2002], moment invariants [Van Gool, L, et al., 1996], and cross-correlation for different types of interest regions. We also propose an extension of the SIFT descriptor and show that it outperforms the original method. Furthermore, we observe that the ranking of the descriptors is mostly independent of the interest region detector and that the SIFT-based descriptors perform best. Moments and steerable filters show the best performance among the low dimensional descriptors.

7,057 citations

Proceedings ArticleDOI
Sivic1, Zisserman1
13 Oct 2003
TL;DR: An approach to object and scene retrieval which searches for and localizes all the occurrences of a user outlined object in a video, represented by a set of viewpoint invariant region descriptors so that recognition can proceed successfully despite changes in viewpoint, illumination and partial occlusion.
Abstract: We describe an approach to object and scene retrieval which searches for and localizes all the occurrences of a user outlined object in a video. The object is represented by a set of viewpoint invariant region descriptors so that recognition can proceed successfully despite changes in viewpoint, illumination and partial occlusion. The temporal continuity of the video within a shot is used to track the regions in order to reject unstable regions and reduce the effects of noise in the descriptors. The analogy with text retrieval is in the implementation where matches on descriptors are pre-computed (using vector quantization), and inverted file systems and document rankings are used. The result is that retrieved is immediate, returning a ranked list of key frames/shots in the manner of Google. The method is illustrated for matching in two full length feature films.

6,938 citations


"Scalable Recognition with a Vocabul..." refers background or methods in this paper

  • ...Object recognition is one of the core problems in computer vision, and it is a very extensively investigated topic....

    [...]

  • ...In the current implementation of the proposed scheme, feature extraction on a 640 × 480 video frame takes around 0.2 seconds and the database query takes 25ms on a database with 50000 images....

    [...]

  • ...With our current implementation, a tree with D = 128, L = 6 and k = 10, resulting in 1M leaf nodes, uses 143MB of memory....

    [...]

Proceedings ArticleDOI
23 May 1998
TL;DR: In this paper, the authors present two algorithms for the approximate nearest neighbor problem in high-dimensional spaces, for data sets of size n living in R d, which require space that is only polynomial in n and d.
Abstract: We present two algorithms for the approximate nearest neighbor problem in high-dimensional spaces. For data sets of size n living in R d , the algorithms require space that is only polynomial in n and d, while achieving query times that are sub-linear in n and polynomial in d. We also show applications to other high-dimensional geometric problems, such as the approximate minimum spanning tree. The article is based on the material from the authors' STOC'98 and FOCS'01 papers. It unifies, generalizes and simplifies the results from those papers.

4,478 citations

Journal ArticleDOI
TL;DR: A comparative evaluation of different detectors is presented and it is shown that the proposed approach for detecting interest points invariant to scale and affine transformations provides better results than existing methods.
Abstract: In this paper we propose a novel approach for detecting interest points invariant to scale and affine transformations. Our scale and affine invariant detectors are based on the following recent results: (1) Interest points extracted with the Harris detector can be adapted to affine transformations and give repeatable results (geometrically stable). (2) The characteristic scale of a local structure is indicated by a local extremum over scale of normalized derivatives (the Laplacian). (3) The affine shape of a point neighborhood is estimated based on the second moment matrix. Our scale invariant detector computes a multi-scale representation for the Harris interest point detector and then selects points at which a local measure (the Laplacian) is maximal over scales. This provides a set of distinctive points which are invariant to scale, rotation and translation as well as robust to illumination changes and limited changes of viewpoint. The characteristic scale determines a scale invariant region for each point. We extend the scale invariant detector to affine invariance by estimating the affine shape of a point neighborhood. An iterative algorithm modifies location, scale and neighborhood of each point and converges to affine invariant points. This method can deal with significant affine transformations including large scale changes. The characteristic scale and the affine shape of neighborhood determine an affine invariant region for each point. We present a comparative evaluation of different detectors and show that our approach provides better results than existing methods. The performance of our detector is also confirmed by excellent matching resultss the image is described by a set of scale/affine invariant descriptors computed on the regions associated with our points.

4,107 citations


"Scalable Recognition with a Vocabul..." refers background in this paper

  • ...The recognition quality is evaluated through retrieval on a database with ground truth, showing the power of the vocabulary tree approach, going as high as 1 million images....

    [...]