scispace - formally typeset
Search or ask a question
Book

Scaling, why is animal size so important?

TL;DR: The importance of animal size in animal function is discussed in this paper, where it is shown that physical laws are equally important, for they determine rates of diffusion and heat transfer, transfer of force and momentum, strength of structures, the dynamics of locomotion, and other aspects of the functioning of animal bodies.
Abstract: This book is about the importance of animal size. We tend to think of animal function in chemical terms and talk of water, salts, proteins, enzymes, oxygen, energy, and so on. We should not forget, however, that physical laws are equally important, for they determine rates of diffusion and heat transfer, transfer of force and momentum, the strength of structures, the dynamics of locomotion, and other aspects of the functioning of animal bodies. Physical laws provide possibilities and opportunities for an organism, yet they also impose constraints, setting limits to what is physically possible. This book aims to give an understanding of these rules because of their profound implications when we deal with animals of widely different size and scale. The reader will find that the book raises many questions. Remarkable and puzzling information makes it read a little like a detective story, but the last chapter, instead of giving the final solution, neither answers all questions nor provides one great unifying principle.
Citations
More filters
Journal ArticleDOI
01 Jul 2004-Ecology
TL;DR: This work has developed a quantitative theory for how metabolic rate varies with body size and temperature, and predicts how metabolic theory predicts how this rate controls ecological processes at all levels of organization from individuals to the biosphere.
Abstract: Metabolism provides a basis for using first principles of physics, chemistry, and biology to link the biology of individual organisms to the ecology of populations, communities, and ecosystems. Metabolic rate, the rate at which organisms take up, transform, and expend energy and materials, is the most fundamental biological rate. We have developed a quantitative theory for how metabolic rate varies with body size and temperature. Metabolic theory predicts how metabolic rate, by setting the rates of resource uptake from the environment and resource allocation to survival, growth, and reproduction, controls ecological processes at all levels of organization from individuals to the biosphere. Examples include: (1) life history attributes, including devel- opment rate, mortality rate, age at maturity, life span, and population growth rate; (2) population interactions, including carrying capacity, rates of competition and predation, and patterns of species diversity; and (3) ecosystem processes, including rates of biomass production and respiration and patterns of trophic dynamics. Data compiled from the ecological literature strongly support the theoretical predictions. Even- tually, metabolic theory may provide a conceptual foundation for much of ecology, just as genetic theory provides a foundation for much of evolutionary biology.

6,017 citations

Journal ArticleDOI
04 Apr 1997-Science
TL;DR: The model provides a complete analysis of scaling relations for mammalian circulatory systems that are in agreement with data and predicts structural and functional properties of vertebrate cardiovascular and respiratory systems, plant vascular systems, insect tracheal tubes, and other distribution networks.
Abstract: Allometric scaling relations, including the 3/4 power law for metabolic rates, are characteristic of all organisms and are here derived from a general model that describes how essential materials are transported through space-filling fractal networks of branching tubes. The model assumes that the energy dissipated is minimized and that the terminal tubes do not vary with body size. It provides a complete analysis of scaling relations for mammalian circulatory systems that are in agreement with data. More generally, the model predicts structural and functional properties of vertebrate cardiovascular and respiratory systems, plant vascular systems, insect tracheal tubes, and other distribution networks.

4,272 citations

Journal ArticleDOI
04 Mar 1989-BMJ
TL;DR: In national samples of 10 year olds and adults in Britain systolic blood pressure was inversely related to birth weight, which suggests that the intrauterine environment influences blood pressure during adult life.
Abstract: In national samples of 9921 10 year olds and 3259 adults in Britain systolic blood pressure was inversely related to birth weight. The association was independent of gestational age and may therefore be attributed to reduced fetal growth. This suggests that the intrauterine environment influences blood pressure during adult life. It is further evidence that the geographical differences in average blood pressure and mortality from cardiovascular disease in Britain partly reflect past differences in the intrauterine environment. Within England and Wales 10 year olds living in areas with high cardiovascular mortality were shorter and had higher resting pulse rates than those living in other areas. Their mothers were also shorter and had higher diastolic blood pressures. This suggests that there are persisting geographical differences in the childhood environment that predispose to differences in cardiovascular mortality.

2,233 citations

Journal ArticleDOI
04 Jun 1999-Science
TL;DR: Fractal-like networks effectively endow life with an additional fourth spatial dimension, and design principles are independent of detailed dynamics and explicit models and should apply to virtually all organisms.
Abstract: Fractal-like networks effectively endow life with an additional fourth spatial dimension. This is the origin of quarter-power scaling that is so pervasive in biology. Organisms have evolved hierarchical branching networks that terminate in size-invariant units, such as capillaries, leaves, mitochondria, and oxidase molecules. Natural selection has tended to maximize both metabolic capacity, by maximizing the scaling of exchange surface areas, and internal efficiency, by minimizing the scaling of transport distances and times. These design principles are independent of detailed dynamics and explicit models and should apply to virtually all organisms.

1,528 citations

Journal ArticleDOI
TL;DR: Community ecology and ecosystem ecology seem to have existed in different worlds, and Levin (1989) suggests that the gulf between the two is the consequence of the different historical traditions in each.
Abstract: Community ecology and ecosystem ecology seem to have existed in different worlds. Levin (1989) suggests that the gulf between the two is the consequence of the different historical traditions in each. Community ecology, for example, emerged from basic studies, where generalized patterns were sought in the natural interactions among the biota. From the outset, the goal has been to deduce general and simple theory. On the other hand, many of the modelling approaches developed to understand ecosystem dynamics emerged from specific applied problems, where not only biotic but abiotic and human disturbances transformed ecosystem function. That tradition, therefore, is often more complete, but at the price of producing a collection of complex specific examples from which generalization is difficult.

1,426 citations