scispace - formally typeset
Journal ArticleDOI

Scanning confocal optical microscopy and magnetic resonance on single defect centers

A. Gruber, +5 more
- 27 Jun 1997 - 
- Vol. 276, Iss: 5321, pp 2012-2014
Reads0
Chats0
TLDR
In this article, the fluorescence of individual nitrogen-vacancy defect centers in diamond was observed with room-temperature scanning confocal optical microscopy, and the centers were photostable, showing no detectable change in their fluorescence emission spectrum as a function of time.
Abstract
The fluorescence of individual nitrogen-vacancy defect centers in diamond was observed with room-temperature scanning confocal optical microscopy. The centers were photostable, showing no detectable change in their fluorescence emission spectrum as a function of time. Magnetic resonance on single centers at room temperature was shown to be feasible. The magnetic resonance spectra revealed marked changes in zero-field splitting parameters among different centers. These changes were attributed to strain-induced differences in the symmetry of the centers.

read more

Citations
More filters
Journal ArticleDOI

Quantum Computing

TL;DR: A number of physical systems, spanning much of modern physics, are being developed for this task, ranging from single particles of light to superconducting circuits, and it is not yet clear which, if any, will ultimately prove successful as discussed by the authors.
Journal ArticleDOI

Quantum sensing

Abstract: "Quantum sensing" describes the use of a quantum system, quantum properties or quantum phenomena to perform a measurement of a physical quantity Historical examples of quantum sensors include magnetometers based on superconducting quantum interference devices and atomic vapors, or atomic clocks More recently, quantum sensing has become a distinct and rapidly growing branch of research within the area of quantum science and technology, with the most common platforms being spin qubits, trapped ions and flux qubits The field is expected to provide new opportunities - especially with regard to high sensitivity and precision - in applied physics and other areas of science In this review, we provide an introduction to the basic principles, methods and concepts of quantum sensing from the viewpoint of the interested experimentalist
Journal ArticleDOI

Nanoscale imaging magnetometry with diamond spins under ambient conditions

TL;DR: This work shows how magneto-optical spin detection can be used to determine the location of a spin associated with a single nitrogen-vacancy centre in diamond with nanometre resolution under ambient conditions, and demonstrates the use of a single diamond spin as a scanning probe magnetometer to map nanoscale magnetic field variations.
Journal ArticleDOI

The nitrogen-vacancy colour centre in diamond

TL;DR: The nitrogen-vacancy (NV) colour centre in diamond is an important physical system for emergent quantum technologies, including quantum metrology, information processing and communications, as well as for various nanotechnologies such as biological and sub-diffraction limit imaging, and for tests of entanglement in quantum mechanics as mentioned in this paper.
Journal ArticleDOI

The nitrogen-vacancy colour centre in diamond

TL;DR: The nitrogen-vacancy (NV) colour centre in diamond is an important physical system for emergent quantum technologies, including quantum metrology, information processing and communications, as well as for various nanotechnologies such as biological and sub-diffraction limit imaging, and for tests of entanglement in quantum mechanics as mentioned in this paper.
References
More filters
Journal ArticleDOI

Fluorescence intermittency in single cadmium selenide nanocrystals

TL;DR: In this article, it was shown that light emission from single fluorescing nanocrystals of cadmium selenide under continuous excitation turns on and off intermittently with a characteristic timescale of about 0.5 seconds.
Book

The Properties of Diamond

Journal ArticleDOI

Single molecules observed by near-field scanning optical microscopy.

TL;DR: Individual carbocyanine dye molecules in a sub-monolayer spread have been imaged with near-field scanning optical microscopy and the orientation of each molecular dipole can be determined to map the electric field distribution in the near- field aperture with molecular spatial resolution.
Journal ArticleDOI

Electron spin resonance in the study of diamond

TL;DR: The role of electron spin resonance in the study of both natural and synthetic diamond is reviewed in this paper, where a brief survey of the physical significance of the constants in the spin Hamiltonian, as well as experimental technique, is given.
Related Papers (5)