scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Scientific Importance of Water‐Processable PEDOT–PSS and Preparation, Challenge and New Application in Sensors of Its Film Electrode: A Review

01 Apr 2017-Journal of Polymer Science Part A (John Wiley & Sons, Ltd)-Vol. 55, Iss: 7, pp 1121-1150
TL;DR: A review of PEDOT-PSS is presented in this article, where the authors discuss the scientific importance and broad multidisciplinary applications in organic/polymeric electronics and optoelectronics from the viewpoint of the historical development and promising application of representative ECPs.
Abstract: In this review, PEDOT–PSS is mainly a commercially available PEDOT–PSS, which is a water-dispersible form of the intrinsically conducting PEDOT doped with the water-soluble PSS, including its derivatives, copolymers, analogs (PEDOT:PSSs), even their composites via the chemical or physical modification toward the structure of PEDOT and/or PSS. First, we will focus on discussing the scientific importance of PEDOT–PSS in conjunction with its extraordinary properties and broad multidisciplinary applications in organic/polymeric electronics and optoelectronics from the viewpoint of the historical development and the promising application of representative ECPs. Subsequently, versatile film-forming techniques for the preparation of PEDOT–PSS film electrode were described in details, including common coating approaches and printing techniques, and many emerging preparative methods were mentioned. Then challenges (e.g., conductivity, stability in Water, adhesion to substrate electrode) of PEDOT–PSS film electrode for devices under the high humidity/watery circumstances, especially electrochemical devices are discussed. Fourth, we take PEDOT–PSS film electrode for a relatively new application in sensors as an example, mainly summarized advances in the development of various sensors based on PEDOT–PSSs and their composites in combination with its preparative methods and extraordinary properties. Finally, we give the outlook of PEDOT–PSS for possible applications with the emphasis on PEDOT–PSS film electrode for electrochemical devices, including sensors. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 55, 1121–1150
Citations
More filters
Journal ArticleDOI
TL;DR: These strategies include blending with plasticizers or polymers, deposition on elastomers, formation of fibers and gels, and the use of intrinsically stretchable scaffolds for the polymerization of PEDOT.
Abstract: The conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT), and especially its complex with poly(styrene sulfonate) (PEDOT:PSS), is perhaps the most well-known example of an organic conductor. It is highly conductive, largely transmissive to light, processible in water, and highly flexible. Much recent work on this ubiquitous material has been devoted to increasing its deformability beyond flexibility-a characteristic possessed by any material that is sufficiently thin-toward stretchability, a characteristic that requires engineering of the structure at the molecular- or nanoscale. Stretchability is the enabling characteristic of a range of applications envisioned for PEDOT in energy and healthcare, such as wearable, implantable, and large-area electronic devices. High degrees of mechanical deformability allow intimate contact with biological tissues and solution-processable printing techniques (e.g., roll-to-roll printing). PEDOT:PSS, however, is only stretchable up to around 10%. Here, the strategies that have been reported to enhance the stretchability of conductive polymers and composites based on PEDOT and PEDOT:PSS are highlighted. These strategies include blending with plasticizers or polymers, deposition on elastomers, formation of fibers and gels, and the use of intrinsically stretchable scaffolds for the polymerization of PEDOT.

546 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the latest advances in stretchable transparent electrodes based on a new design strategy known as kirigami (the art of paper cutting) is presented.
Abstract: Flexible electronics, as an emerging and exciting research field, have brought great interest to the issue of how to make flexible electronic materials that offer both durability and high performance at strained states. With the advent of on-body wearable and implantable electronics, as well as increasing demands for human-friendly intelligent soft robots, enormous effort is being expended on highly flexible functional materials, especially stretchable electrodes, by both the academic and industrial communities. Among different deformation modes, stretchability is the most demanding and challenging. This review focuses on the latest advances in stretchable transparent electrodes based on a new design strategy known as kirigami (the art of paper cutting) and investigates the recent progress on novel applications, including skin-like electronics, implantable biodegradable devices, and bioinspired soft robotics. By comparing the optoelectrical and mechanical properties of different electrode materials, some of the most important outcomes with comments on their merits and demerits are raised. Key design considerations in terms of geometries, substrates, and adhesion are also discussed, offering insights into the universal strategies for engineering stretchable electrodes regardless of the material. It is suggested that highly stretchable and biocompatible electrodes will greatly boost the development of next-generation intelligent life-like electronics.

472 citations

Journal ArticleDOI
TL;DR: This review answers many questions around the nanomaterials used, their inherent properties and the chemistries they offer that are of interest to the analytical systems, and their roles in analytical applications in the past 5 years (2013-2018), and it gives a quantitative assessment of their positive effects on the analyses.
Abstract: Electrochemical biosensors and associated lab-on-a-chip devices are the analytical system of choice when rapid and on-site results are needed in medical diagnostics and food safety, for environmental protection, process control, wastewater treatment, and life sciences discovery research among many others. A premier example is the glucose sensor used by diabetic patients. Current research focuses on developing sensors for specific analytes in these application fields and addresses challenges that need to be solved before viable commercial products can be designed. These challenges typically include the lowering of the limit of detection, the integration of sample preparation into the device and hence analysis directly within a sample matrix, finding strategies for long-term in vivo use, etc. Today, functional nanomaterials are synthesized, investigated, and applied in electrochemical biosensors and lab-on-a-chip devices to assist in this endeavor. This review answers many questions around the nanomaterials...

375 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed and discussed recent progresses dealing with the electrical conductivity and transport properties in poly(3,4-ethylene dioxythiophene), with special attention on morphological and structural features.

292 citations

Journal ArticleDOI
11 Aug 2017-Polymers
TL;DR: This review provides an insight into the synthesis and applications of innovative poly(ethylenedioxythiophene)-type materials for bioelectronics such as biocompatible conducting polymer layers, conducting hydrogels, biosensors, selective detachment of cells, scaffolds for tissue engineering, electrodes for electrophysiology, implantable electrodes, stimulation of neuronal cells or pan-bio electronics.
Abstract: Poly(3,4-ethylenedioxythiophene)s are the conducting polymers (CP) with the biggest prospects in the field of bioelectronics due to their combination of characteristics (conductivity, stability, transparency and biocompatibility). The gold standard material is the commercially available poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). However, in order to well connect the two fields of biology and electronics, PEDOT:PSS presents some limitations associated with its low (bio)functionality. In this review, we provide an insight into the synthesis and applications of innovative poly(ethylenedioxythiophene)-type materials for bioelectronics. First, we present a detailed analysis of the different synthetic routes to (bio)functional dioxythiophene monomer/polymer derivatives. Second, we focus on the preparation of PEDOT dispersions using different biopolymers and biomolecules as dopants and stabilizers. To finish, we review the applications of innovative PEDOT-type materials such as biocompatible conducting polymer layers, conducting hydrogels, biosensors, selective detachment of cells, scaffolds for tissue engineering, electrodes for electrophysiology, implantable electrodes, stimulation of neuronal cells or pan-bio electronics.

173 citations


Cites background from "Scientific Importance of Water‐Proc..."

  • ...Among different conducting polymers, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is the most promising due to its high conductivity, easy processing and commercial availability [1,2]....

    [...]

References
More filters
Journal ArticleDOI
05 Feb 2009-Nature
TL;DR: The direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers is reported, and two different methods of patterning the films and transferring them to arbitrary substrates are presented, implying that the quality of graphene grown by chemical vapours is as high as mechanically cleaved graphene.
Abstract: Problems associated with large-scale pattern growth of graphene constitute one of the main obstacles to using this material in device applications. Recently, macroscopic-scale graphene films were prepared by two-dimensional assembly of graphene sheets chemically derived from graphite crystals and graphene oxides. However, the sheet resistance of these films was found to be much larger than theoretically expected values. Here we report the direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers, and present two different methods of patterning the films and transferring them to arbitrary substrates. The transferred graphene films show very low sheet resistance of approximately 280 Omega per square, with approximately 80 per cent optical transparency. At low temperatures, the monolayers transferred to silicon dioxide substrates show electron mobility greater than 3,700 cm(2) V(-1) s(-1) and exhibit the half-integer quantum Hall effect, implying that the quality of graphene grown by chemical vapour deposition is as high as mechanically cleaved graphene. Employing the outstanding mechanical properties of graphene, we also demonstrate the macroscopic use of these highly conducting and transparent electrodes in flexible, stretchable, foldable electronics.

10,033 citations

Journal ArticleDOI
TL;DR: A solution-based method is reported that allows uniform and controllable deposition of reduced graphene oxide thin films with thicknesses ranging from a single monolayer to several layers over large areas, which could represent a route for translating the interesting fundamental properties of graphene into technologically viable devices.
Abstract: The integration of novel materials such as single-walled carbon nanotubes and nanowires into devices has been challenging, but developments in transfer printing and solution-based methods now allow these materials to be incorporated into large-area electronics1,2,3,4,5,6. Similar efforts are now being devoted to making the integration of graphene into devices technologically feasible7,8,9,10. Here, we report a solution-based method that allows uniform and controllable deposition of reduced graphene oxide thin films with thicknesses ranging from a single monolayer to several layers over large areas. The opto-electronic properties can thus be tuned over several orders of magnitude, making them potentially useful for flexible and transparent semiconductors or semi-metals. The thinnest films exhibit graphene-like ambipolar transistor characteristics, whereas thicker films behave as graphite-like semi-metals. Collectively, our deposition method could represent a route for translating the interesting fundamental properties of graphene into technologically viable devices.

4,174 citations

Journal ArticleDOI
26 Mar 2013-ACS Nano
TL;DR: The properties and advantages of single-, few-, and many-layer 2D materials in field-effect transistors, spin- and valley-tronics, thermoelectrics, and topological insulators, among many other applications are highlighted.
Abstract: Graphene’s success has shown that it is possible to create stable, single and few-atom-thick layers of van der Waals materials, and also that these materials can exhibit fascinating and technologically useful properties. Here we review the state-of-the-art of 2D materials beyond graphene. Initially, we will outline the different chemical classes of 2D materials and discuss the various strategies to prepare single-layer, few-layer, and multilayer assembly materials in solution, on substrates, and on the wafer scale. Additionally, we present an experimental guide for identifying and characterizing single-layer-thick materials, as well as outlining emerging techniques that yield both local and global information. We describe the differences that occur in the electronic structure between the bulk and the single layer and discuss various methods of tuning their electronic properties by manipulating the surface. Finally, we highlight the properties and advantages of single-, few-, and many-layer 2D materials in...

4,123 citations

Journal ArticleDOI
TL;DR: This review restricts discussions to purely fluorescence-based methods using conjugated polymers (CPs) and details earlier research in this Introduction to illustrate fundamental concepts and terminology that underpin the recent literature.
Abstract: The field of chemical sensing is becoming ever more dependent upon novel materials. Polymers, crystals, glasses, particles, and nanostructures have made a profound impact and have endowed modern sensory systems with superior performance. Electronic polymers have emerged as one of the most important classes of transduction materials; they readily transform a chemical signal into an easily measured electrical or optical event. Although our group reviewed this field in 2000,1 the high levels of activity and the impact of these methods now justify a subsequent review as part of this special issue. In this review we restrict our discussions to purely fluorescence-based methods using conjugated polymers (CPs). We further confine our detailed coverage to articles published since our previous review and will only detail earlier research in this Introduction to illustrate fundamental concepts and terminology that underpin the recent literature.

3,796 citations

Journal ArticleDOI

3,711 citations