scispace - formally typeset
Search or ask a question
ReportDOI

Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada

About: The article was published on 1999-01-01 and is currently open access. It has received 216 citations till now. The article focuses on the topics: Mallik gas hydrate site.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a comprehensive review of the status of the contemporary carbon cycle of the Arctic and its response to climate change is presented to clarify key uncertainties and vulnerabilities in the response of the carbon cycle in the Arctic to ongoing climatic change.
Abstract: The recent warming in the Arctic is affecting a broad spectrum of physical, ecological, and human/cultural systems that may be irreversible on century time scales and have the potential to cause rapid changes in the earth system. The response of the carbon cycle of the Arctic to changes in climate is a major issue of global concern, yet there has not been a comprehensive review of the status of the contemporary carbon cycle of the Arctic and its response to climate change. This review is designed to clarify key uncertainties and vulnerabilities in the response of the carbon cycle of the Arctic to ongoing climatic change. While it is clear that there are substantial stocks of carbon in the Arctic, there are also significant uncertainties associated with the magnitude of organic matter stocks contained in permafrost and the storage of methane hydrates beneath both subterranean and submerged permafrost of the Arctic. In the context of the global carbon cycle, this review demonstrates that the Arctic plays an important role in the global dynamics of both CO2 and CH4. Studies suggest that the Arctic has been a sink for atmospheric CO2 of between 0 and 0.8 Pg C/yr in recent decades, which is between 0% and 25% of the global net land/ocean flux during the 1990s. The Arctic is a substantial source of CH4 to the atmosphere (between 32 and 112 Tg CH4/yr), primarily because of the large area of wetlands throughout the region. Analyses to date indicate that the sensitivity of the carbon cycle of the Arctic during the remainder of the 21st century is highly uncertain. To improve the capability to assess the sensitivity of the carbon cycle of the Arctic to projected climate change, we recommend that (1) integrated regional studies be conducted to link observations of carbon dynamics to the processes that are likely to influence those dynamics, and (2) the understanding gained from these integrated studies be incorporated into both uncoupled and fully coupled carbon-climate modeling efforts. (Less)

953 citations

Journal ArticleDOI
TL;DR: A review of the current understanding of phenomena involved in gas hydrate formation and the physical properties of hydrate-bearing sediments can be found in this paper, where the magnitudes and interdependencies of these properties are critically important for predicting and quantifying macroscale responses of hydrates to changes in mechanical, thermal, or chemical boundary conditions.
Abstract: [1] Methane gas hydrates, crystalline inclusion compounds formed from methane and water, are found in marine continental margin and permafrost sediments worldwide. This article reviews the current understanding of phenomena involved in gas hydrate formation and the physical properties of hydrate-bearing sediments. Formation phenomena include pore-scale habit, solubility, spatial variability, and host sediment aggregate properties. Physical properties include thermal properties, permeability, electrical conductivity and permittivity, small-strain elastic P and S wave velocities, shear strength, and volume changes resulting from hydrate dissociation. The magnitudes and interdependencies of these properties are critically important for predicting and quantifying macroscale responses of hydrate-bearing sediments to changes in mechanical, thermal, or chemical boundary conditions. These predictions are vital for mitigating borehole, local, and regional slope stability hazards; optimizing recovery techniques for extracting methane from hydrate-bearing sediments or sequestering carbon dioxide in gas hydrate; and evaluating the role of gas hydrate in the global carbon cycle.

745 citations


Cites background from "Scientific Results from JAPEX/JNOC/..."

  • ...Coarse-grained reservoirs, such as those found in the Mallik permafrost site in Canada and the Nankai Trough offshore Japan, tend to develop gas hydrate as a pore-filling material, occasion- ally reaching pore saturations of 80% (Table 4) [Dallimore et al., 1999; Winters et al., 1999]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m.
Abstract: The discovery of large gas hydrate accumulations in terrestrial per mafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved be fore gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

543 citations

Book ChapterDOI
TL;DR: Natural gas hydrate occurs worldwide in oceanic sediment of continental and insular slopes and rises of active and passive margins, in deep-water sediment of inland lakes and seas, and in polar sediment on both continents and continental shelves.
Abstract: Natural gas hydrate occurs worldwide in oceanic sediment of continental and insular slopes and rises of active and passive margins, in deep-water sediment of inland lakes and seas, and in polar sediment on both continents and continental shelves. In aquatic sediment, where water depths exceed about 300 m and bottom water temperatures approach 0° C, gas hydrate is found at the seafloor to sediment depths of about 1,100 m. In polar continental regions, gas hydrate can be present in sediment at depths between about 150 and 2000 m. Thus, natural gas hydrate is restricted to the shallow geosphere where its presence affects the physical and chemical properties of near-surface sediment. An updated global inventory reports on natural gas hydrate recovered from 19 places worldwide and includes 77 places where the presence of gas hydrate has been inferred from geophysical, geochemical, and geological evidence. The potential amount of methane in natural gas hydrate is enormous, with current estimates converging around about 10 teratonnes (10 19 g) of methane carbon.

363 citations

Journal Article
TL;DR: In this article, the authors discuss the distribution of natural gas hydrate accumulations, the status of the primary international RD Klauda and Sandler, 2005), reservoir lithology, and rates and their production potential.
Abstract: Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential George J. Moridis, SPE, Lawrence Berkeley National Laboratory; Timothy S. Collett, SPE, US Geological Survey; Ray Boswell, US Department of Energy; M. Kurihara, SPE, Japan Oil Engineering Company; Matthew T. Reagan, SPE, Lawrence Berkeley National Laboratory; Carolyn Koh and E. Dendy Sloan, SPE, Colorado School of Mines This paper was prepared for presentation at the 2008 SPE Unconventional Reservoirs Conference held in Keystone, Colorado, U.S.A., 10–12 February 2008. Abstract Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international RD Klauda and Sandler, 2005). Given the sheer magnitude of the resource, ever increasing global energy demand, and the finite volume of conventional fossil fuel reserves, gas hydrates are emerging as a potential energy source for a growing number of nations. The attractive- ness of gas hydrates is further enhanced by the environmental desirability of natural gas (as opposed to solid or liquid) fuels. Thus, the appeal of gas hydrate accumulations as future hydrocarbon gas sources is rapidly increasing and their production potential clearly demands technical and economic evaluation. The past decade has seen a marked acceleration in gas hydrate RD Paull et al., 2005), reservoir lithology, and rates and

343 citations