scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Search-and-replace genome editing without double-strand breaks or donor DNA

TL;DR: A new DNA-editing technique called prime editing offers improved versatility and efficiency with reduced byproducts compared with existing techniques, and shows potential for correcting disease-associated mutations.
Abstract: Most genetic variants that contribute to disease1 are challenging to correct efficiently and without excess byproducts2-5. Here we describe prime editing, a versatile and precise genome editing method that directly writes new genetic information into a specified DNA site using a catalytically impaired Cas9 endonuclease fused to an engineered reverse transcriptase, programmed with a prime editing guide RNA (pegRNA) that both specifies the target site and encodes the desired edit. We performed more than 175 edits in human cells, including targeted insertions, deletions, and all 12 types of point mutation, without requiring double-strand breaks or donor DNA templates. We used prime editing in human cells to correct, efficiently and with few byproducts, the primary genetic causes of sickle cell disease (requiring a transversion in HBB) and Tay-Sachs disease (requiring a deletion in HEXA); to install a protective transversion in PRNP; and to insert various tags and epitopes precisely into target loci. Four human cell lines and primary post-mitotic mouse cortical neurons support prime editing with varying efficiencies. Prime editing shows higher or similar efficiency and fewer byproducts than homology-directed repair, has complementary strengths and weaknesses compared to base editing, and induces much lower off-target editing than Cas9 nuclease at known Cas9 off-target sites. Prime editing substantially expands the scope and capabilities of genome editing, and in principle could correct up to 89% of known genetic variants associated with human diseases.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This work analyzes key considerations when choosing genome editing agents and identifies opportunities for future improvements and applications in basic research and therapeutics.
Abstract: The development of new CRISPR-Cas genome editing tools continues to drive major advances in the life sciences. Four classes of CRISPR-Cas-derived genome editing agents-nucleases, base editors, transposases/recombinases and prime editors-are currently available for modifying genomes in experimental systems. Some of these agents have also moved rapidly into the clinic. Each tool comes with its own capabilities and limitations, and major efforts have broadened their editing capabilities, expanded their targeting scope and improved editing specificity. We analyze key considerations when choosing genome editing agents and identify opportunities for future improvements and applications in basic research and therapeutics.

1,068 citations

01 Feb 2015
TL;DR: Current progress toward developing programmable nuclease–based therapies as well as future prospects and challenges are discussed.
Abstract: Recent advances in the development of genome editing technologies based on programmable nucleases have substantially improved our ability to make precise changes in the genomes of eukaryotic cells. Genome editing is already broadening our ability to elucidate the contribution of genetics to disease by facilitating the creation of more accurate cellular and animal models of pathological processes. A particularly tantalizing application of programmable nucleases is the potential to directly correct genetic mutations in affected tissues and cells to treat diseases that are refractory to traditional therapies. Here we discuss current progress toward developing programmable nuclease–based therapies as well as future prospects and challenges.

846 citations

Journal ArticleDOI
TL;DR: The resulting suite of plant prime editors enable point mutations, insertions and deletions in rice and wheat protoplasts through codon, promoter, and editing-condition optimization.
Abstract: Prime editors, which are CRISPR-Cas9 nickase (H840A)-reverse transcriptase fusions programmed with prime editing guide RNAs (pegRNAs), can edit bases in mammalian cells without donor DNA or double-strand breaks. We adapted prime editors for use in plants through codon, promoter, and editing-condition optimization. The resulting suite of plant prime editors enable point mutations, insertions and deletions in rice and wheat protoplasts. Regenerated prime-edited rice plants were obtained at frequencies of up to 21.8%.

463 citations

Journal ArticleDOI
12 Feb 2020-Nature
TL;DR: The scientific, technical and ethical aspects of using CRISPR technology for therapeutic applications in humans are discussed, highlighting both opportunities and challenges of this technology to treat, cure and prevent genetic disease.
Abstract: Genome editing, which involves the precise manipulation of cellular DNA sequences to alter cell fates and organism traits, has the potential to both improve our understanding of human genetics and cure genetic disease. Here I discuss the scientific, technical and ethical aspects of using CRISPR (clustered regularly interspaced short palindromic repeats) technology for therapeutic applications in humans, focusing on specific examples that highlight both opportunities and challenges. Genome editing is-or will soon be-in the clinic for several diseases, with more applications under development. The rapid pace of the field demands active efforts to ensure that this breakthrough technology is used responsibly to treat, cure and prevent genetic disease.

402 citations

Journal ArticleDOI
TL;DR: The most important applications of CRISPR-Cas in increasing plant yield, quality, disease resistance and herbicide resistance, breeding and accelerated domestication, and prospective applications of this game-changing technology are discussed.
Abstract: The prokaryote-derived CRISPR–Cas genome editing technology has altered plant molecular biology beyond all expectations. Characterized by robustness and high target specificity and programmability, CRISPR–Cas allows precise genetic manipulation of crop species, which provides the opportunity to create germplasms with beneficial traits and to develop novel, more sustainable agricultural systems. Furthermore, the numerous emerging biotechnologies based on CRISPR–Cas platforms have expanded the toolbox of fundamental research and plant synthetic biology. In this Review, we first briefly describe gene editing by CRISPR–Cas, focusing on the newest, precise gene editing technologies such as base editing and prime editing. We then discuss the most important applications of CRISPR–Cas in increasing plant yield, quality, disease resistance and herbicide resistance, breeding and accelerated domestication. We also highlight the most recent breakthroughs in CRISPR–Cas-related plant biotechnologies, including CRISPR–Cas reagent delivery, gene regulation, multiplexed gene editing and mutagenesis and directed evolution technologies. Finally, we discuss prospective applications of this game-changing technology. The newest CRISPR–Cas genome editing technologies enable precise and simplified formation of crops with increased yield, quality, disease resistance and herbicide resistance, as well as accelerated domestication. Recent breakthroughs in CRISPR–Cas plant biotechnologies improve reagent delivery, gene regulation, multiplexed gene editing and directed evolution.

338 citations

References
More filters
Journal ArticleDOI
TL;DR: The results indicate that Cas9 toxicity creates an obstacle to the high-throughput use of CRISPR/Cas9 for genome engineering and screening in hPSCs, and as h PSCs can acquire P53 mutations14, cell replacement therapies using CRISpr/cas9-enginereed hPSCS should proceed with caution, and such engineered hPSPs should be monitored for P53 function.
Abstract: CRISPR/Cas9 has revolutionized our ability to engineer genomes and conduct genome-wide screens in human cells1–3. Whereas some cell types are amenable to genome engineering, genomes of human pluripotent stem cells (hPSCs) have been difficult to engineer, with reduced efficiencies relative to tumour cell lines or mouse embryonic stem cells3–13. Here, using hPSC lines with stable integration of Cas9 or transient delivery of Cas9-ribonucleoproteins (RNPs), we achieved an average insertion or deletion (indel) efficiency greater than 80%. This high efficiency of indel generation revealed that double-strand breaks (DSBs) induced by Cas9 are toxic and kill most hPSCs. In previous studies, the toxicity of Cas9 in hPSCs was less apparent because of low transfection efficiency and subsequently low DSB induction 3 . The toxic response to DSBs was P53/TP53-dependent, such that the efficiency of precise genome engineering in hPSCs with a wild-type P53 gene was severely reduced. Our results indicate that Cas9 toxicity creates an obstacle to the high-throughput use of CRISPR/Cas9 for genome engineering and screening in hPSCs. Moreover, as hPSCs can acquire P53 mutations 14 , cell replacement therapies using CRISPR/Cas9-enginereed hPSCs should proceed with caution, and such engineered hPSCs should be monitored for P53 function.

692 citations

Journal ArticleDOI
TL;DR: Five C to T (or G to A) base editors that use natural and engineered Cas9 variants with different protospacer-adjacent motif (PAM) specificities to expand the number of sites that can be targeted by base editing 2.5-fold are reported.
Abstract: Base editing induces single-nucleotide changes in the DNA of living cells using a fusion protein containing a catalytically defective Streptococcus pyogenes Cas9, a cytidine deaminase, and an inhibitor of base excision repair. This genome editing approach has the advantage that it does not require formation of double-stranded DNA breaks or provision of a donor DNA template. Here we report the development of five C to T (or G to A) base editors that use natural and engineered Cas9 variants with different protospacer-adjacent motif (PAM) specificities to expand the number of sites that can be targeted by base editing 2.5-fold. Additionally, we engineered base editors containing mutated cytidine deaminase domains that narrow the width of the editing window from ∼5 nucleotides to as little as 1-2 nucleotides. We thereby enabled discrimination of neighboring C nucleotides, which would otherwise be edited with similar efficiency, and doubled the number of disease-associated target Cs able to be corrected preferentially over nearby non-target Cs.

605 citations

Journal ArticleDOI
TL;DR: A mammalian expression vector for a modified form of I-Sce I, a yeast mitochondrial intron-encoded endonuclease with an 18-bp recognition sequence will provide a powerful approach to studying a number of molecular processes in mammalian cells, including homologous recombination.
Abstract: Double-strand breaks introduced into DNA in vivo have been shown to enhance homologous recombination in a variety of chromosomal and extrachromosomal loci in Saccharomyces cerevisiae. To introduce double-strand breaks in DNA at defined locations in mammalian cells, we have constructed a mammalian expression vector for a modified form of I-Sce I, a yeast mitochondrial intron-encoded endonuclease with an 18-bp recognition sequence. Expression of the modified I-Sce I endonuclease in COS1 cells results in cleavage of model recombination substrates and enhanced extrachromosomal recombination, as assayed by chloramphenicol acetyltransferase activity and Southern blot analysis. Constitutive expression of the endonuclease in mouse 3T3 cells is not lethal, possibly due to either the lack of I-Sce I sites in the genome or sufficient repair of them. Expression of an endonuclease with such a long recognition sequence will provide a powerful approach to studying a number of molecular processes in mammalian cells, including homologous recombination.

598 citations

Journal ArticleDOI
TL;DR: It is shown that expression levels are a bottleneck in base-editing efficiency, and cytidine and adenine base editors are optimized by modification of nuclear localization signals and codon usage, and ancestral reconstruction of the deaminase component.
Abstract: Base editors enable targeted single-nucleotide conversions in genomic DNA. Here we show that expression levels are a bottleneck in base-editing efficiency. We optimize cytidine (BE4) and adenine (ABE7.10) base editors by modification of nuclear localization signals (NLS) and codon usage, and ancestral reconstruction of the deaminase component. The resulting BE4max, AncBE4max, and ABEmax editors correct pathogenic SNPs with substantially increased efficiency in a variety of mammalian cell types.

572 citations

Journal ArticleDOI
TL;DR: The remarkable progress in the analysis of host genomes has brought to light the significant impact of HERVs and other retroelements on genetic variation, genome evolution, and gene regulation.
Abstract: Retroelements constitute a large portion of our genomes. One class of these elements, the human endogenous retroviruses (HERVs), is comprised of remnants of ancient exogenous retroviruses that have gained access to the germ line. After integration, most proviruses have been the subject of numerous amplifications and have suffered extensive deletions and mutations. Nevertheless, HERV-derived transcripts and proteins have been detected in healthy and diseased human tissues, and HERV-K, the youngest, most conserved family, is able to form virus-like particles. Although it is generally accepted that the integration of retroelements can cause significant harm by disrupting or disregulating essential genes, the role of HERV expression in the etiology of malignancies and autoimmune and neurologic diseases remains controversial. In recent years, striking evidence has accumulated indicating that some proviral sequences and HERV proteins might even serve the needs of the host and are therefore under positive selection. The remarkable progress in the analysis of host genomes has brought to light the significant impact of HERVs and other retroelements on genetic variation, genome evolution, and gene regulation.

497 citations