scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Seasonal and interannual variability of tropospheric ozone over an urban site in India: A study based on MOZAIC and CCM vertical profiles over Hyderabad

TL;DR: In this paper, the analysis of Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) data measured over Hyderabad, India during the years 2006-2008 is presented.
Abstract: This study is based on the analysis of Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) data measured over Hyderabad, India during the years 2006–2008. Tropospheric profiles of O3 show clear seasonality with high and low values during the premonsoon and monsoon seasons, respectively. Analysis of back trajectory and fire count data indicates major roles for long-range transport and biomass burning in the seasonal variation of O3. Typically, lower levels of O3 in the monsoon season were due to the flow of marine air and negligible regional biomass burning, while higher levels in other seasons were due to transport of continental air. In the upper troposphere, relatively low levels of O3 during the monsoon and postmonsoon seasons were associated with deep convection. In the free troposphere, levels of O3 also show year-to-year variability as the values in the premonsoon of 2006 were higher by about 30 ppbv compared to 2008. The year-to-year variations were mainly due to transition from El Nino (2006) to La Nina (2008). The higher and lower levels of O3 were associated with strong and weak wind shears, respectively. Typically, vertical variations of O3 were anticorrelated with the lapse rate profile. The lower O3 levels were observed in the stable layers, but higher values in the midtroposphere were caused by long-range transport. In the PBL region, the mixing ratio of O3 shows strong dependencies on meteorological parameters. The Chemistry Climate Model (CCM2) reasonably reproduced the observed profiles of O3 except for the premonsoon season.
Citations
More filters
Journal Article
TL;DR: In this paper, an inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment, in which emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia.
Abstract: [i] An inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment funded by the National Science Foundation (NSF) and the National Oceanic and Atmospheric Administration (NOAA). Emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia. We estimate total Asian emissions as follows: 34.3 Tg SO 2 , 26.8 Tg NO x , 9870 Tg CO 2 , 279 Tg CO, 107 Tg CH 4 , 52.2 Tg NMVOC, 2.54 Tg black carbon (BC), 10.4 Tg organic carbon (OC), and 27.5 Tg NH 3 . In addition, NMVOC are speciated into 19 subcategories according to functional groups and reactivity. Thus we are able to identify the major source regions and types for many of the significant gaseous and particle emissions that influence pollutant concentrations in the vicinity of the TRACE-P and ACE-Asia field measurements. Emissions in China dominate the signature of pollutant concentrations in this region, so special emphasis has been placed on the development of emission estimates for China. China's emissions are determined to be as follows: 20.4 Tg SO 2 , 11.4 Tg NO x , 3820 Tg CO 2 , 116 Tg CO, 38.4 Tg CH 4 , 17.4 Tg NMVOC, 1.05 Tg BC, 3.4 Tg OC, and 13.6 Tg NH 3 . Emissions are gridded at a variety of spatial resolutions from 1° × 1° to 30 s x 30 s, using the exact locations of large point sources and surrogate GIS distributions of urban and rural population, road networks, landcover, ship lanes, etc. The gridded emission estimates have been used as inputs to atmospheric simulation models and have proven to be generally robust in comparison with field observations, though there is reason to think that emissions of CO and possibly BC may be underestimated. Monthly emission estimates for China are developed for each species to aid TRACE-P and ACE-Asia data interpretation. During the observation period of March/ April, emissions are roughly at their average values (one twelfth of annual). Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of ±16% for SO 2 to a high of ±450% for OC.

1,828 citations

BookDOI
01 Jan 2020

203 citations


Cites background from "Seasonal and interannual variabilit..."

  • ...For example, Multi-Sensor Reanalysis (MSR/ MSR-2) and TOMS observations over north India show a decreasing trend of −0.08 to −0.15% year−1 during 1979– 2008 (Tandon and Attri 2011) and −0.03 to −0.11% year−1 during January 1979–December 2012 (Sahu et al. 2014)....

    [...]

Journal ArticleDOI
01 Dec 2019
TL;DR: In this paper, the authors summarized three dominant pathways of meteorological and climatic impacts on tropospheric ozone and present their recent progress, including changes in the natural precursor emissions, the kinetics and partitioning of chemistry and deposition, and the transport of ozone and its precursors.
Abstract: Tropospheric ozone is a key air pollutant and greenhouse gas Its fate strongly depends on meteorological conditions and therefore subject to climate change influences Such dependences through biogenic, chemical, and dynamic processes on different spatiotemporal scales have been unraveled from observations and modeling studies In this process-oriented review, we summarize three dominant pathways of meteorological and climatic impacts on tropospheric ozone and present their recent progress The three pathways are influences through changes in the natural precursor emissions, the kinetics and partitioning of chemistry and deposition, and the transport of ozone and its precursors Tropospheric ozone levels have shown significant global or regional responses to meteorological/climatic changes (eg, changes in the Brewer-Dobson Circulation, the Hadley Circulation, and El Nino–Southern Oscillation) and can be explained through the conjunction of these pathways Most recent model projections predict that future climate will increase surface ozone in polluted regions and decrease ozone at a global scale due to stronger ozone chemical loss However, uncertainties in climate-ozone responses and limitations in model capability still challenge the magnitude and even the sign of such projections We highlight the rising importance of future increase of stratosphere-troposphere exchange in modulating tropospheric ozone that may largely compensate the predicted chemical loss of tropospheric ozone burden We also highlight that uncertainties in isoprene chemistry, biogenic emissions in changing CO2 levels and vegetation, and interactions between ozone and vegetation may largely affect the surface ozone response to climate change Future research and model improvements are required to fill these gaps

120 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the continuous measurements of ozone (O3), carbon monoxide (CO) and nitrogen oxides (NOx) at a semi-arid urban site in Udaipur, India during the years 2011-2012.

99 citations

Journal ArticleDOI
TL;DR: In this paper, high mass and time-resolved measurements of seven VOCs using a PTR-TOF-MS instrument at an urban site of India during winter 2013 were performed.

94 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step.
Abstract: . New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997–2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997–2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 Pg C year−1 with significant interannual variability during 1997–2001 (2.8 Pg C year−1 in 1998 and 1.6 Pg C year−1 in 2001). Globally, emissions during 2002–2007 were relatively constant (around 2.1 Pg C year−1) before declining in 2008 (1.7 Pg C year−1) and 2009 (1.5 Pg C year−1) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002–2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001–2009), most carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. Total carbon emissions were on average 13% lower than in our previous (GFED2) work. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 Pg C year−1. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series.

2,494 citations


"Seasonal and interannual variabilit..." refers background or methods in this paper

  • ...In this study, the emission data of CO and NOx were taken from the GFED3 inventory [van der Werf et al., 2006, 2010]....

    [...]

  • ...The biomass burning activities in South Asia exhibit strong seasonality with a peak during February–April [van der Werf et al., 2006, 2010]....

    [...]

  • ...Biomass burning emission data were taken from the Global Fire Emissions Database version 3 (GFED3) [Van der Werf et al., 2010]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors present a new dataset of gridded emissions covering the historical period (1850-2000) in decadal increments at a horizontal resolution of 0.5° in latitude and longitude.
Abstract: We present and discuss a new dataset of gridded emissions covering the historical period (1850–2000) in decadal increments at a horizontal resolution of 0.5° in latitude and longitude. The primary purpose of this inventory is to provide consistent gridded emissions of reactive gases and aerosols for use in chemistry model simulations needed by climate models for the Climate Model Intercomparison Program #5 (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Our best estimate for the year 2000 inventory represents a combination of existing regional and global inventories to capture the best information available at this point; 40 regions and 12 sectors are used to combine the various sources. The historical reconstruction of each emitted compound, for each region and sector, is then forced to agree with our 2000 estimate, ensuring continuity between past and 2000 emissions. Simulations from two chemistry-climate models is used to test the ability of the emission dataset described here to capture long-term changes in atmospheric ozone, carbon monoxide and aerosol distributions. The simulated long-term change in the Northern mid-latitudes surface and mid-troposphere ozone is not quite as rapid as observed. However, stations outside this latitude band show much better agreement in both present-day and long-term trend. The model simulations indicate that the concentration of carbon monoxide is underestimated at the Mace Head station; however, the long-term trend over the limited observational period seems to be reasonably well captured. The simulated sulfate and black carbon deposition over Greenland is in very good agreement with the ice-core observations spanning the simulation period. Finally, aerosol optical depth and additional aerosol diagnostics are shown to be in good agreement with previously published estimates and observations.

1,953 citations

Journal Article
TL;DR: In this paper, an inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment, in which emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia.
Abstract: [i] An inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment funded by the National Science Foundation (NSF) and the National Oceanic and Atmospheric Administration (NOAA). Emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia. We estimate total Asian emissions as follows: 34.3 Tg SO 2 , 26.8 Tg NO x , 9870 Tg CO 2 , 279 Tg CO, 107 Tg CH 4 , 52.2 Tg NMVOC, 2.54 Tg black carbon (BC), 10.4 Tg organic carbon (OC), and 27.5 Tg NH 3 . In addition, NMVOC are speciated into 19 subcategories according to functional groups and reactivity. Thus we are able to identify the major source regions and types for many of the significant gaseous and particle emissions that influence pollutant concentrations in the vicinity of the TRACE-P and ACE-Asia field measurements. Emissions in China dominate the signature of pollutant concentrations in this region, so special emphasis has been placed on the development of emission estimates for China. China's emissions are determined to be as follows: 20.4 Tg SO 2 , 11.4 Tg NO x , 3820 Tg CO 2 , 116 Tg CO, 38.4 Tg CH 4 , 17.4 Tg NMVOC, 1.05 Tg BC, 3.4 Tg OC, and 13.6 Tg NH 3 . Emissions are gridded at a variety of spatial resolutions from 1° × 1° to 30 s x 30 s, using the exact locations of large point sources and surrogate GIS distributions of urban and rural population, road networks, landcover, ship lanes, etc. The gridded emission estimates have been used as inputs to atmospheric simulation models and have proven to be generally robust in comparison with field observations, though there is reason to think that emissions of CO and possibly BC may be underestimated. Monthly emission estimates for China are developed for each species to aid TRACE-P and ACE-Asia data interpretation. During the observation period of March/ April, emissions are roughly at their average values (one twelfth of annual). Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of ±16% for SO 2 to a high of ±450% for OC.

1,828 citations

Journal ArticleDOI
Abstract: [1] An inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment funded by the National Science Foundation (NSF) and the National Oceanic and Atmospheric Administration (NOAA). Emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia. We estimate total Asian emissions as follows: 34.3 Tg SO2, 26.8 Tg NOx, 9870 Tg CO2, 279 Tg CO, 107 Tg CH4, 52.2 Tg NMVOC, 2.54 Tg black carbon (BC), 10.4 Tg organic carbon (OC), and 27.5 Tg NH3. In addition, NMVOC are speciated into 19 subcategories according to functional groups and reactivity. Thus we are able to identify the major source regions and types for many of the significant gaseous and particle emissions that influence pollutant concentrations in the vicinity of the TRACE-P and ACE-Asia field measurements. Emissions in China dominate the signature of pollutant concentrations in this region, so special emphasis has been placed on the development of emission estimates for China. China's emissions are determined to be as follows: 20.4 Tg SO2, 11.4 Tg NOx, 3820 Tg CO2, 116 Tg CO, 38.4 Tg CH4, 17.4 Tg NMVOC, 1.05 Tg BC, 3.4 Tg OC, and 13.6 Tg NH3. Emissions are gridded at a variety of spatial resolutions from 1° × 1° to 30 s × 30 s, using the exact locations of large point sources and surrogate GIS distributions of urban and rural population, road networks, landcover, ship lanes, etc. The gridded emission estimates have been used as inputs to atmospheric simulation models and have proven to be generally robust in comparison with field observations, though there is reason to think that emissions of CO and possibly BC may be underestimated. Monthly emission estimates for China are developed for each species to aid TRACE-P and ACE-Asia data interpretation. During the observation period of March/April, emissions are roughly at their average values (one twelfth of annual). Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of ±16% for SO2 to a high of ±450% for OC.

1,816 citations

Journal ArticleDOI
TL;DR: The Ozone Monitoring Instrument is a ultraviolet/visible nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial resolution of 13 km/spl times/24 km and will enable detection of air pollution on urban scale resolution.
Abstract: The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Administration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial resolution of 13 km/spl times/24 km. Trace gases measured include O/sub 3/, NO/sub 2/, SO/sub 2/, HCHO, BrO, and OClO. In addition, OMI will measure aerosol characteristics, cloud top heights, and UV irradiance at the surface. OMI's unique capabilities for measuring important trace gases with a small footprint and daily global coverage will be a major contribution to our understanding of stratospheric and tropospheric chemistry and climate change. OMI's high spatial resolution is unprecedented and will enable detection of air pollution on urban scale resolution. In this paper, the instrument and its performance will be discussed.

1,644 citations

Related Papers (5)