scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor.

TL;DR: Massively parallel DNA sequencing of treatment‐naive and post‐olaparib treatment biopsies identified tumour‐specific BRCA2 secondary mutations in olaparir‐resistant metastases, which most likely cause olapsarib resistance by re‐establishing BRC a2 function in the tumour cells.
Abstract: PARP inhibitors (PARPi) for the treatment of BRCA1 or BRCA2 deficient tumours are currently the focus of seminal clinical trials exploiting the concept of synthetic lethality. Although clinical resistance to PARPi has been described, the mechanism underlying this has not been elucidated. Here, we investigate tumour material from patients who had developed resistance to the PARPi olaparib, subsequent to showing an initial clinical response. Massively parallel DNA sequencing of treatment-naive and post-olaparib treatment biopsies identified tumour-specific BRCA2 secondary mutations in olaparib-resistant metastases. These secondary mutations restored full-length BRCA2 protein, and most likely cause olaparib resistance by re-establishing BRCA2 function in the tumour cells.
Citations
More filters
Journal ArticleDOI
17 Mar 2017-Science
TL;DR: Current knowledge of PARP inhibitors and potential ways to maximize their clinical effectiveness are discussed, and interesting lessons for the development of other therapies are provided.
Abstract: PARP inhibitors (PARPi), a cancer therapy targeting poly(ADP-ribose) polymerase, are the first clinically approved drugs designed to exploit synthetic lethality, a genetic concept proposed nearly a century ago. Tumors arising in patients who carry germline mutations in either BRCA1 or BRCA2 are sensitive to PARPi because they have a specific type of DNA repair defect. PARPi also show promising activity in more common cancers that share this repair defect. However, as with other targeted therapies, resistance to PARPi arises in advanced disease. In addition, determining the optimal use of PARPi within drug combination approaches has been challenging. Nevertheless, the preclinical discovery of PARPi synthetic lethality and the route to clinical approval provide interesting lessons for the development of other therapies. Here, we discuss current knowledge of PARP inhibitors and potential ways to maximize their clinical effectiveness.

1,643 citations

Journal ArticleDOI
TL;DR: The genotypic and phenotypic characteristics of HR-deficient EOCs are described, current and emerging approaches for targeting these tumors are discussed, and present challenges associated with these approaches, focusing on development and overcoming resistance.
Abstract: Approximately 50% of epithelial ovarian cancers (EOC) exhibit defective DNA repair via homologous recombination (HR) due to genetic and epigenetic alterations of HR pathway genes. Defective HR is an important therapeutic target in EOC as exemplified by the efficacy of platinum analogues in this disease, as well as the advent of PARP inhibitors, which exhibit synthetic lethality when applied to HR-deficient cells. Here, we describe the genotypic and phenotypic characteristics of HR-deficient EOCs, discuss current and emerging approaches for targeting these tumors, and present challenges associated with these approaches, focusing on development and overcoming resistance. Significance: Defective DNA repair via HR is a pivotal vulnerability of EOC, particularly of the high-grade serous histologic subtype. Targeting defective HR offers the unique opportunity of exploiting molecular differences between tumor and normal cells, thereby inducing cancer-specific synthetic lethality; the promise and challenges of these approaches in ovarian cancer are discussed in this review. Cancer Discov; 5(11); 1137–54. ©2015 AACR .

594 citations


Cites result from "Secondary mutations in BRCA2 associ..."

  • ...Similar observations have been made in biopsies from olaparib-resistant tumors in which acquisition of secondary BRCA2 mutations restored a functional BRCA2 protein (144)....

    [...]

Journal ArticleDOI
TL;DR: An in-depth analysis of the function, role and therapeutic potential of 450 expert-curated human DDR genes is presented, and systematic computational analysis is applied to identify DDR proteins that are amenable to modulation by small molecules, highlighting potential novel therapeutic targets.
Abstract: The DNA damage response (DDR) is essential for maintaining the genomic integrity of the cell, and its disruption is one of the hallmarks of cancer. Classically, defects in the DDR have been exploited therapeutically in the treatment of cancer with radiation therapies or genotoxic chemotherapies. More recently, protein components of the DDR systems have been identified as promising avenues for targeted cancer therapeutics. Here, we present an in-depth analysis of the function, role in cancer and therapeutic potential of 450 expert-curated human DDR genes. We discuss the DDR drugs that have been approved by the US Food and Drug Administration (FDA) or that are under clinical investigation. We examine large-scale genomic and expression data for 15 cancers to identify deregulated components of the DDR, and we apply systematic computational analysis to identify DDR proteins that are amenable to modulation by small molecules, highlighting potential novel therapeutic targets.

428 citations

Journal ArticleDOI
TL;DR: The biological rationale for BRCA-PARP synthetic lethality is discussed, how the synthetic lethal approach is being assessed in the clinic, and how mechanisms of resistance are starting to be dissected.
Abstract: The genetic concept of synthetic lethality, in which the combination or synthesis of mutations in multiple genes results in cell death, provides a framework to design novel therapeutic approaches to cancer. Already there are promising indications, from clinical trials exploiting this concept by using poly(ADP-ribose) polymerase (PARP) inhibitors in patients with germline BRCA1 or BRCA2 gene mutations, that this approach could be beneficial. We discuss the biological rationale for BRCA-PARP synthetic lethality, how the synthetic lethal approach is being assessed in the clinic, and how mechanisms of resistance are starting to be dissected. Applying the synthetic lethal concept to target non-BRCA-mutant cancers also has clear potential, and we discuss how some of the principles learned in developing PARP inhibitors might also drive the development of additional genetic approaches.

419 citations

Journal ArticleDOI
TL;DR: Advances in next-generation sequencing technologies are enabling the identification of hundreds of tumour-specific mutations and alterations in gene expression that could be targeted by a synthetic lethality approach.
Abstract: A synthetic lethal interaction occurs between two genes when the perturbation of either gene alone is viable but the perturbation of both genes simultaneously results in the loss of viability. Key to exploiting synthetic lethality in cancer treatment are the identification and the mechanistic characterization of robust synthetic lethal genetic interactions. Advances in next-generation sequencing technologies are enabling the identification of hundreds of tumour-specific mutations and alterations in gene expression that could be targeted by a synthetic lethality approach. The translation of synthetic lethality to therapy will be assisted by the synthesis of genetic interaction data from model organisms, tumour genomes and human cell lines.

413 citations

References
More filters
Journal ArticleDOI
TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Abstract: Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ~10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: [email protected]

43,862 citations


"Secondary mutations in BRCA2 associ..." refers methods in this paper

  • ...Reads were aligned to the human reference genome (GRCh37) using BWA [13]....

    [...]

Journal ArticleDOI
TL;DR: The GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.
Abstract: Next-generation DNA sequencing (NGS) projects, such as the 1000 Genomes Project, are already revolutionizing our understanding of genetic variation among individuals. However, the massive data sets generated by NGS—the 1000 Genome pilot alone includes nearly five terabases—make writing feature-rich, efficient, and robust analysis tools difficult for even computationally sophisticated individuals. Indeed, many professionals are limited in the scope and the ease with which they can answer scientific questions by the complexity of accessing and manipulating the data produced by these machines. Here, we discuss our Genome Analysis Toolkit (GATK), a structured programming framework designed to ease the development of efficient and robust analysis tools for next-generation DNA sequencers using the functional programming philosophy of MapReduce. The GATK provides a small but rich set of data access patterns that encompass the majority of analysis tool needs. Separating specific analysis calculations from common data management infrastructure enables us to optimize the GATK framework for correctness, stability, and CPU and memory efficiency and to enable distributed and shared memory parallelization. We highlight the capabilities of the GATK by describing the implementation and application of robust, scale-tolerant tools like coverage calculators and single nucleotide polymorphism (SNP) calling. We conclude that the GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.

20,557 citations

Journal ArticleDOI
14 Apr 2005-Nature
TL;DR: BRCA1 or BRCA2 dysfunction unexpectedly and profoundly sensitizes cells to the inhibition of PARP enzymatic activity, resulting in chromosomal instability, cell cycle arrest and subsequent apoptosis, illustrating how different pathways cooperate to repair damage.
Abstract: BRCA1 and BRCA2 are important for DNA double-strand break repair by homologous recombination, and mutations in these genes predispose to breast and other cancers. Poly(ADP-ribose) polymerase (PARP) is an enzyme involved in base excision repair, a key pathway in the repair of DNA single-strand breaks. We show here that BRCA1 or BRCA2 dysfunction unexpectedly and profoundly sensitizes cells to the inhibition of PARP enzymatic activity, resulting in chromosomal instability, cell cycle arrest and subsequent apoptosis. This seems to be because the inhibition of PARP leads to the persistence of DNA lesions normally repaired by homologous recombination. These results illustrate how different pathways cooperate to repair damage, and suggest that the targeted inhibition of particular DNA repair pathways may allow the design of specific and less toxic therapies for cancer.

5,650 citations

Journal ArticleDOI
14 Apr 2005-Nature
TL;DR: It is proposed that, in the absence of PARP1, spontaneous single-strand breaks collapse replication forks and trigger homologous recombination for repair and exploited in order to kill BRCA2-deficient tumours by PARP inhibition alone.
Abstract: Poly(ADP-ribose) polymerase (PARP1) facilitates DNA repair by binding to DNA breaks and attracting DNA repair proteins to the site of damage. Nevertheless, PARP1-/- mice are viable, fertile and do not develop early onset tumours. Here, we show that PARP inhibitors trigger gamma-H2AX and RAD51 foci formation. We propose that, in the absence of PARP1, spontaneous single-strand breaks collapse replication forks and trigger homologous recombination for repair. Furthermore, we show that BRCA2-deficient cells, as a result of their deficiency in homologous recombination, are acutely sensitive to PARP inhibitors, presumably because resultant collapsed replication forks are no longer repaired. Thus, PARP1 activity is essential in homologous recombination-deficient BRCA2 mutant cells. We exploit this requirement in order to kill BRCA2-deficient tumours by PARP inhibition alone. Treatment with PARP inhibitors is likely to be highly tumour specific, because only the tumours (which are BRCA2-/-) in BRCA2+/- patients are defective in homologous recombination. The use of an inhibitor of a DNA repair enzyme alone to selectively kill a tumour, in the absence of an exogenous DNA-damaging agent, represents a new concept in cancer treatment.

4,262 citations

Journal ArticleDOI
TL;DR: Olaparib has few of the adverse effects of conventional chemotherapy, inhibits PARP, and has antitumor activity in cancer associated with the BRCA1 or BRCa2 mutation.
Abstract: Background The inhibition of poly(adenosine diphosphate [ADP]–ribose) polymerase (PARP) is a potential synthetic lethal therapeutic strategy for the treatment of cancers with specific DNA-repair defects, including those arising in carriers of a BRCA1 or BRCA2 mutation. We conducted a clinical evaluation in humans of olaparib (AZD2281), a novel, potent, orally active PARP inhibitor. Methods This was a phase 1 trial that included the analysis of pharmacokinetic and pharmacodynamic characteristics of olaparib. Selection was aimed at having a study population enriched in carriers of a BRCA1 or BRCA2 mutation. Results We enrolled and treated 60 patients; 22 were carriers of a BRCA1 or BRCA2 mutation and 1 had a strong family history of BRCA-associated cancer but declined to undergo mutational testing. The olaparib dose and schedule were increased from 10 mg daily for 2 of every 3 weeks to 600 mg twice daily continuously. Reversible dose-limiting toxicity was seen in one of eight patients receiving 400 mg twice...

3,332 citations

Related Papers (5)