scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Secure spread spectrum watermarking for multimedia

01 Dec 1997-IEEE Transactions on Image Processing (IEEE)-Vol. 6, Iss: 12, pp 1673-1687
TL;DR: It is argued that insertion of a watermark under this regime makes the watermark robust to signal processing operations and common geometric transformations provided that the original image is available and that it can be successfully registered against the transformed watermarked image.
Abstract: This paper presents a secure (tamper-resistant) algorithm for watermarking images, and a methodology for digital watermarking that may be generalized to audio, video, and multimedia data. We advocate that a watermark should be constructed as an independent and identically distributed (i.i.d.) Gaussian random vector that is imperceptibly inserted in a spread-spectrum-like fashion into the perceptually most significant spectral components of the data. We argue that insertion of a watermark under this regime makes the watermark robust to signal processing operations (such as lossy compression, filtering, digital-analog and analog-digital conversion, requantization, etc.), and common geometric transformations (such as cropping, scaling, translation, and rotation) provided that the original image is available and that it can be successfully registered against the transformed watermarked image. In these cases, the watermark detector unambiguously identifies the owner. Further, the use of Gaussian noise, ensures strong resilience to multiple-document, or collusional, attacks. Experimental results are provided to support these claims, along with an exposition of pending open problems.
Citations
More filters
Journal ArticleDOI
TL;DR: This work explores both traditional and novel techniques for addressing the data-hiding process and evaluates these techniques in light of three applications: copyright protection, tamper-proofing, and augmentation data embedding.
Abstract: Data hiding, a form of steganography, embeds data into digital media for the purpose of identification, annotation, and copyright. Several constraints affect this process: the quantity of data to be hidden, the need for invariance of these data under conditions where a "host" signal is subject to distortions, e.g., lossy compression, and the degree to which the data must be immune to interception, modification, or removal by a third party. We explore both traditional and novel techniques for addressing the data-hiding process and evaluate these techniques in light of three applications: copyright protection, tamper-proofing, and augmentation data embedding.

3,037 citations

Book
24 Oct 2001
TL;DR: Digital Watermarking covers the crucial research findings in the field and explains the principles underlying digital watermarking technologies, describes the requirements that have given rise to them, and discusses the diverse ends to which these technologies are being applied.
Abstract: Digital watermarking is a key ingredient to copyright protection. It provides a solution to illegal copying of digital material and has many other useful applications such as broadcast monitoring and the recording of electronic transactions. Now, for the first time, there is a book that focuses exclusively on this exciting technology. Digital Watermarking covers the crucial research findings in the field: it explains the principles underlying digital watermarking technologies, describes the requirements that have given rise to them, and discusses the diverse ends to which these technologies are being applied. As a result, additional groundwork is laid for future developments in this field, helping the reader understand and anticipate new approaches and applications.

2,849 citations

Journal ArticleDOI
TL;DR: It is proved analytically and shown experimentally that the peak signal-to-noise ratio of the marked image generated by this method versus the original image is guaranteed to be above 48 dB, which is much higher than that of all reversible data hiding techniques reported in the literature.
Abstract: A novel reversible data hiding algorithm, which can recover the original image without any distortion from the marked image after the hidden data have been extracted, is presented in this paper. This algorithm utilizes the zero or the minimum points of the histogram of an image and slightly modifies the pixel grayscale values to embed data into the image. It can embed more data than many of the existing reversible data hiding algorithms. It is proved analytically and shown experimentally that the peak signal-to-noise ratio (PSNR) of the marked image generated by this method versus the original image is guaranteed to be above 48 dB. This lower bound of PSNR is much higher than that of all reversible data hiding techniques reported in the literature. The computational complexity of our proposed technique is low and the execution time is short. The algorithm has been successfully applied to a wide range of images, including commonly used images, medical images, texture images, aerial images and all of the 1096 images in CorelDraw database. Experimental results and performance comparison with other reversible data hiding schemes are presented to demonstrate the validity of the proposed algorithm.

2,240 citations


Additional excerpts

  • ...© Springer-Verlag Berlin Heidelberg 2005...

    [...]

Journal ArticleDOI
25 Jun 2000
TL;DR: It is shown that QIM is "provably good" against arbitrary bounded and fully informed attacks, and achieves provably better rate distortion-robustness tradeoffs than currently popular spread-spectrum and low-bit(s) modulation methods.
Abstract: We consider the problem of embedding one signal (e.g., a digital watermark), within another "host" signal to form a third, "composite" signal. The embedding is designed to achieve efficient tradeoffs among the three conflicting goals of maximizing the information-embedding rate, minimizing the distortion between the host signal and composite signal, and maximizing the robustness of the embedding. We introduce new classes of embedding methods, termed quantization index modulation (QIM) and distortion-compensated QIM (DC-QIM), and develop convenient realizations in the form of what we refer to as dither modulation. Using deterministic models to evaluate digital watermarking methods, we show that QIM is "provably good" against arbitrary bounded and fully informed attacks, which arise in several copyright applications, and in particular it achieves provably better rate distortion-robustness tradeoffs than currently popular spread-spectrum and low-bit(s) modulation methods. Furthermore, we show that for some important classes of probabilistic models, DC-QIM is optimal (capacity-achieving) and regular QIM is near-optimal. These include both additive white Gaussian noise (AWGN) channels, which may be good models for hybrid transmission applications such as digital audio broadcasting, and mean-square-error-constrained attack channels that model private-key watermarking applications.

2,218 citations


Cites background or methods from "Secure spread spectrum watermarking..."

  • ...Typically, takes the form (3) where is a unit-energy spreading vector and is a scalar function of the message.3 It is often convenient to view additive spread-spectrum as perturbation of a projection....

    [...]

  • ...Thus, these methods are useful primarily when either the host signal is available at the decoder (as assumed in, e.g., [26]) or when the host-signal interference is much smaller than the channel interference....

    [...]

Book
23 Nov 2007
TL;DR: This new edition now contains essential information on steganalysis and steganography, and digital watermark embedding is given a complete update with new processes and applications.
Abstract: Digital audio, video, images, and documents are flying through cyberspace to their respective owners. Unfortunately, along the way, individuals may choose to intervene and take this content for themselves. Digital watermarking and steganography technology greatly reduces the instances of this by limiting or eliminating the ability of third parties to decipher the content that he has taken. The many techiniques of digital watermarking (embedding a code) and steganography (hiding information) continue to evolve as applications that necessitate them do the same. The authors of this second edition provide an update on the framework for applying these techniques that they provided researchers and professionals in the first well-received edition. Steganography and steganalysis (the art of detecting hidden information) have been added to a robust treatment of digital watermarking, as many in each field research and deal with the other. New material includes watermarking with side information, QIM, and dirty-paper codes. The revision and inclusion of new material by these influential authors has created a must-own book for anyone in this profession. *This new edition now contains essential information on steganalysis and steganography *New concepts and new applications including QIM introduced *Digital watermark embedding is given a complete update with new processes and applications

1,773 citations

References
More filters
Journal ArticleDOI
TL;DR: An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key.
Abstract: An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences: (1) Couriers or other secure means are not needed to transmit keys, since a message can be enciphered using an encryption key publicly revealed by the intented recipient. Only he can decipher the message, since only he knows the corresponding decryption key. (2) A message can be “signed” using a privately held decryption key. Anyone can verify this signature using the corresponding publicly revealed encryption key. Signatures cannot be forged, and a signer cannot later deny the validity of his signature. This has obvious applications in “electronic mail” and “electronic funds transfer” systems. A message is encrypted by representing it as a number M, raising M to a publicly specified power e, and then taking the remainder when the result is divided by the publicly specified product, n, of two large secret primer numbers p and q. Decryption is similar; only a different, secret, power d is used, where e * d ≡ 1(mod (p - 1) * (q - 1)). The security of the system rests in part on the difficulty of factoring the published divisor, n.

14,659 citations

Book
01 Jan 1991
TL;DR: The author explains the design and implementation of the Levinson-Durbin Algorithm, which automates the very labor-intensive and therefore time-heavy and expensive process of designing and implementing a Quantizer.
Abstract: 1 Introduction- 11 Signals, Coding, and Compression- 12 Optimality- 13 How to Use this Book- 14 Related Reading- I Basic Tools- 2 Random Processes and Linear Systems- 21 Introduction- 22 Probability- 23 Random Variables and Vectors- 24 Random Processes- 25 Expectation- 26 Linear Systems- 27 Stationary and Ergodic Properties- 28 Useful Processes- 29 Problems- 3 Sampling- 31 Introduction- 32 Periodic Sampling- 33 Noise in Sampling- 34 Practical Sampling Schemes- 35 Sampling Jitter- 36 Multidimensional Sampling- 37 Problems- 4 Linear Prediction- 41 Introduction- 42 Elementary Estimation Theory- 43 Finite-Memory Linear Prediction- 44 Forward and Backward Prediction- 45 The Levinson-Durbin Algorithm- 46 Linear Predictor Design from Empirical Data- 47 Minimum Delay Property- 48 Predictability and Determinism- 49 Infinite Memory Linear Prediction- 410 Simulation of Random Processes- 411 Problems- II Scalar Coding- 5 Scalar Quantization I- 51 Introduction- 52 Structure of a Quantizer- 53 Measuring Quantizer Performance- 54 The Uniform Quantizer- 55 Nonuniform Quantization and Companding- 56 High Resolution: General Case- 57 Problems- 6 Scalar Quantization II- 61 Introduction- 62 Conditions for Optimality- 63 High Resolution Optimal Companding- 64 Quantizer Design Algorithms- 65 Implementation- 66 Problems- 7 Predictive Quantization- 71 Introduction- 72 Difference Quantization- 73 Closed-Loop Predictive Quantization- 74 Delta Modulation- 75 Problems- 8 Bit Allocation and Transform Coding- 81 Introduction- 82 The Problem of Bit Allocation- 83 Optimal Bit Allocation Results- 84 Integer Constrained Allocation Techniques- 85 Transform Coding- 86 Karhunen-Loeve Transform- 87 Performance Gain of Transform Coding- 88 Other Transforms- 89 Sub-band Coding- 810 Problems- 9 Entropy Coding- 91 Introduction- 92 Variable-Length Scalar Noiseless Coding- 93 Prefix Codes- 94 Huffman Coding- 95 Vector Entropy Coding- 96 Arithmetic Coding- 97 Universal and Adaptive Entropy Coding- 98 Ziv-Lempel Coding- 99 Quantization and Entropy Coding- 910 Problems- III Vector Coding- 10 Vector Quantization I- 101 Introduction- 102 Structural Properties and Characterization- 103 Measuring Vector Quantizer Performance- 104 Nearest Neighbor Quantizers- 105 Lattice Vector Quantizers- 106 High Resolution Distortion Approximations- 107 Problems- 11 Vector Quantization II- 111 Introduction- 112 Optimality Conditions for VQ- 113 Vector Quantizer Design- 114 Design Examples- 115 Problems- 12 Constrained Vector Quantization- 121 Introduction- 122 Complexity and Storage Limitations- 123 Structurally Constrained VQ- 124 Tree-Structured VQ- 125 Classified VQ- 126 Transform VQ- 127 Product Code Techniques- 128 Partitioned VQ- 129 Mean-Removed VQ- 1210 Shape-Gain VQ- 1211 Multistage VQ- 1212 Constrained Storage VQ- 1213 Hierarchical and Multiresolution VQ- 1214 Nonlinear Interpolative VQ- 1215 Lattice Codebook VQ- 1216 Fast Nearest Neighbor Encoding- 1217 Problems- 13 Predictive Vector Quantization- 131 Introduction- 132 Predictive Vector Quantization- 133 Vector Linear Prediction- 134 Predictor Design from Empirical Data- 135 Nonlinear Vector Prediction- 136 Design Examples- 137 Problems- 14 Finite-State Vector Quantization- 141 Recursive Vector Quantizers- 142 Finite-State Vector Quantizers- 143 Labeled-States and Labeled-Transitions- 144 Encoder/Decoder Design- 145 Next-State Function Design- 146 Design Examples- 147 Problems- 15 Tree and Trellis Encoding- 151 Delayed Decision Encoder- 152 Tree and Trellis Coding- 153 Decoder Design- 154 Predictive Trellis Encoders- 155 Other Design Techniques- 156 Problems- 16 Adaptive Vector Quantization- 161 Introduction- 162 Mean Adaptation- 163 Gain-Adaptive Vector Quantization- 164 Switched Codebook Adaptation- 165 Adaptive Bit Allocation- 166 Address VQ- 167 Progressive Code Vector Updating- 168 Adaptive Codebook Generation- 169 Vector Excitation Coding- 1610 Problems- 17 Variable Rate Vector Quantization- 171 Variable Rate Coding- 172 Variable Dimension VQ- 173 Alternative Approaches to Variable Rate VQ- 174 Pruned Tree-Structured VQ- 175 The Generalized BFOS Algorithm- 176 Pruned Tree-Structured VQ- 177 Entropy Coded VQ- 178 Greedy Tree Growing- 179 Design Examples- 1710 Bit Allocation Revisited- 1711 Design Algorithms- 1712 Problems

7,015 citations

Journal ArticleDOI
TL;DR: This work explores both traditional and novel techniques for addressing the data-hiding process and evaluates these techniques in light of three applications: copyright protection, tamper-proofing, and augmentation data embedding.
Abstract: Data hiding, a form of steganography, embeds data into digital media for the purpose of identification, annotation, and copyright. Several constraints affect this process: the quantity of data to be hidden, the need for invariance of these data under conditions where a "host" signal is subject to distortions, e.g., lossy compression, and the degree to which the data must be immune to interception, modification, or removal by a third party. We explore both traditional and novel techniques for addressing the data-hiding process and evaluate these techniques in light of three applications: copyright protection, tamper-proofing, and augmentation data embedding.

3,037 citations

Proceedings Article
31 Dec 1993
TL;DR: Results from constrained optimization some results from algebraic geometry differential geometry are shown.
Abstract: Projective geometry modelling and calibrating cameras edge detection representing geometric primitives and their uncertainty stereo vision determining discrete motion from points and lines tracking tokens over time motion fields of curves interpolating and approximating three-dimensional data recognizing and locating objects and places answers to problems. Appendices: constrained optimization some results from algebraic geometry differential geometry.

2,744 citations

Journal ArticleDOI
TL;DR: It is the intention of this paper to provide a tutorial treatment of the theory of spread-spectrum communications, including a discussion on the applications referred to, on the properties of common spreading sequences, and on techniques that can be used for acquisition and tracking.
Abstract: Spread-spectrum communications, with its inherent interference attenuation capability, has over the years become an increasingly popular technique for use in many different systems. Applications range from antijam systems, to code division multiple access systems, to systems designed to combat multipath. It is the intention of this paper to provide a tutorial treatment of the theory of spread-spectrum communications, including a discussion on the applications referred to above, on the properties of common spreading sequences, and on techniques that can be used for acquisition and tracking.

1,579 citations