scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Security and Privacy for 6G: A Survey on Prospective Technologies and Challenges

30 Aug 2021-IEEE Communications Surveys and Tutorials (Institute of Electrical and Electronics Engineers (IEEE))-Vol. 23, Iss: 4, pp 2384-2428
TL;DR: In this article, the authors provide a systematic overview of security and privacy issues based on prospective technologies for 6G in the physical, connection, and service layers, as well as through lessons learned from the failures of existing security architectures and state-of-the-art defenses.
Abstract: Sixth-generation (6G) mobile networks will have to cope with diverse threats on a space-air-ground integrated network environment, novel technologies, and an accessible user information explosion. However, for now, security and privacy issues for 6G remain largely in concept. This survey provides a systematic overview of security and privacy issues based on prospective technologies for 6G in the physical, connection, and service layers, as well as through lessons learned from the failures of existing security architectures and state-of-the-art defenses. Two key lessons learned are as follows. First, other than inheriting vulnerabilities from the previous generations, 6G has new threat vectors from new radio technologies, such as the exposed location of radio stripes in ultra-massive MIMO systems at Terahertz bands and attacks against pervasive intelligence. Second, physical layer protection, deep network slicing, quantum-safe communications, artificial intelligence (AI) security, platform-agnostic security, real-time adaptive security, and novel data protection mechanisms such as distributed ledgers and differential privacy are the top promising techniques to mitigate the attack magnitude and personal data breaches substantially.
Citations
More filters
Journal ArticleDOI
TL;DR: This article provides a comprehensive review of the Metaverse for healthcare, emphasizing on the state of the art, the enabling technologies for adopting the MetaVERSE, the potential applications and the related projects.
Abstract: The rapid progress in digitalization and automation have led to an accelerated growth in healthcare, generating novel models that are creating new channels for rendering treatment at reduced cost. The Metaverse is an emerging technology in the digital space which has huge potential in healthcare, enabling realistic experiences to the patients as well as the medical practitioners. The Metaverse is a confluence of multiple enabling technologies such as artificial intelligence, virtual reality, augmented reality, internet of medical devices, robotics, quantum computing, etc. through which new directions for providing quality healthcare treatment and services can be explored. The amalgamation of these technologies ensures immersive, intimate and personalized patient care. It also provides adaptive intelligent solutions that eliminates the barriers between healthcare providers and receivers. This article provides a comprehensive review of the Metaverse for healthcare, emphasizing on the state of the art, the enabling technologies to adopt the Metaverse for healthcare, the potential applications, and the related projects. The issues in the adaptation of the Metaverse for healthcare applications are also identified and the plausible solutions are highlighted as part of future research directions.

32 citations

Journal ArticleDOI
01 Aug 2022-Carbon
TL;DR: In this article , ultralight and mechanically durable graphene/carbon fiber composite aerogels (CGAs) are synthesized via solvothermal reaction and freeze-drying.

18 citations

Journal ArticleDOI
TL;DR: In this paper , the authors provide a critical appraisal of the literature of promising techniques ranging from the associated architectures, networking, and applications, as well as designs, and advocate a further evolutionary step toward multi-component Pareto optimization.
Abstract: While the fifth-generation systems are being rolled out across the globe, researchers have turned their attention to the exploration of radical next-generation solutions. At this early evolutionary stage, we survey five main research facets of this field, namely Facet 1: next-generation architectures, spectrum, and services; Facet 2: next-generation networking; Facet 3: Internet of Things; Facet 4: wireless positioning and sensing; and Facet 5: applications of deep learning in 6G networks. In this article, we provide a critical appraisal of the literature of promising techniques ranging from the associated architectures, networking, and applications, as well as designs. We portray a plethora of heterogeneous architectures relying on cooperative hybrid networks supported by diverse access and transmission mechanisms. The vulnerabilities of these techniques are also addressed and carefully considered for highlighting the most of promising future research directions. Additionally, we list a rich suite of learning-driven optimization techniques. We conclude by observing the evolutionary paradigm shift that has taken place from pure single-component bandwidth efficiency, power efficiency, or delay optimization toward multi-component designs, as exemplified by the twin-component ultra-reliable low-latency mode of the fifth-generation system. We advocate a further evolutionary step toward multi-component Pareto optimization, which requires the exploration of the entire Pareto front of all optimal solutions, where none of the components of the objective function may be improved without degrading at least one of the other components.

15 citations

Journal ArticleDOI
TL;DR: In this paper , the authors provide a detailed insight into the full potential in 6G for the acceleration of renewable energy sources (RES) with the faster and stable data bandwidth, including P2P energy trade market, vehicular network, wireless energy transfer, energy management system, smart grid, self-healing, smart batteries and AI-based weather forecasting.
Abstract: As the renewable energy sources (RES) continues to grow in power system due to emissions decarbonisation and sustainability policies, a fast and reliable connection between RES components and equipment is crucial to ensure quality power delivery. This review provides a detailed insight into the full potential in 6G for the acceleration of RES with the faster and stable data bandwidth. The potential applications of 6G wireless networks for faster data processing in RES include P2P energy trade market, vehicular network, wireless energy transfer, energy management system, smart grid, self-healing, smart batteries and AI-based weather forecasting. This paper also lists the advantages and challenges of 6G in RES sectors, the practical implementations and the potential applications. It was found out that although the 6G is a visionary application in the RES sector to improve the security, connectivity, integration and sensory data processing of RES, 6G still possesses various technical limitations, including incompatibility issues of older devices, higher power consumption and higher operating cost. Future research should focus on the improvements of 6G in RES in terms of cost-effectiveness, compatibility issues and power consumption to balance between the advancement and limitations. This review serves as a visionary for 6G wireless communication to be applied in the RES sector in the near future. 6G in the RES sector encountered several critical limitations needing an intensive development, including still the issues of security and privacy, prone to hacking or data bleaching, required advanced hardware support and requirements for ultra-fast communications with low latency. • Due to climate change and emissions decarbonisation policy, the power system has shifted to RES-based generation. • 6G technology may revolutionise the RES sector with a fast, reliable and secured connection. • Potential applications and recommendations of 6G in the RES sector are discussed. • AI and blockchain frameworks improve remote data privacy and secure energy trading.

15 citations

Posted Content
12 Nov 2021
TL;DR: In this article, the authors present recent advances in the 6G wireless networks, including the evolution from 1G to 5G communications, the research trends for 6G, enabling technologies, and state-of-the-art 6G projects.
Abstract: Smart services based on the Internet of Everything (IoE) are gaining considerable popularity due to the ever-increasing demands of wireless networks. This demands the appraisal of the wireless networks with enhanced properties as next-generation communication systems. Although 5G networks show great potential to support numerous IoE based services, it is not adequate to meet the complete requirements of the new smart applications. Therefore, there is an increased demand for envisioning the 6G wireless communication systems to overcome the major limitations in the existing 5G networks. Moreover, incorporating artificial intelligence in 6G will provide solutions for very complex problems relevant to network optimization. Furthermore, to add further value to the future 6G networks, researchers are investigating new technologies, such as THz and quantum communications. The requirements of future 6G wireless communications demand to support massive data-driven applications and the increasing number of users. This paper presents recent advances in the 6G wireless networks, including the evolution from 1G to 5G communications, the research trends for 6G, enabling technologies, and state-of-the-art 6G projects.

14 citations

References
More filters
Journal ArticleDOI
TL;DR: This article identifies the primary drivers of 6G systems, in terms of applications and accompanying technological trends, and identifies the enabling technologies for the introduced 6G services and outlines a comprehensive research agenda that leverages those technologies.
Abstract: The ongoing deployment of 5G cellular systems is continuously exposing the inherent limitations of this system, compared to its original premise as an enabler for Internet of Everything applications. These 5G drawbacks are spurring worldwide activities focused on defining the next-generation 6G wireless system that can truly integrate far-reaching applications ranging from autonomous systems to extended reality. Despite recent 6G initiatives (one example is the 6Genesis project in Finland), the fundamental architectural and performance components of 6G remain largely undefined. In this article, we present a holistic, forward-looking vision that defines the tenets of a 6G system. We opine that 6G will not be a mere exploration of more spectrum at high-frequency bands, but it will rather be a convergence of upcoming technological trends driven by exciting, underlying services. In this regard, we first identify the primary drivers of 6G systems, in terms of applications and accompanying technological trends. Then, we propose a new set of service classes and expose their target 6G performance requirements. We then identify the enabling technologies for the introduced 6G services and outline a comprehensive research agenda that leverages those technologies. We conclude by providing concrete recommendations for the roadmap toward 6G. Ultimately, the intent of this article is to serve as a basis for stimulating more out-of-the-box research around 6G.

2,416 citations

Book ChapterDOI
21 Jun 1998
TL;DR: NTRU encryption and decryption use a mixing system suggested by polynomial algebra combined with a clustering principle based on elementary probability theory to create a new public key cryptosystem.
Abstract: We describe NTRU, a new public key cryptosystem. NTRU features reasonably short, easily created keys, high speed, and low memory requirements. NTRU encryption and decryption use a mixing system suggested by polynomial algebra combined with a clustering principle based on elementary probability theory. The security of the NTRU cryptosystem comes from the interaction of the polynomial mixing system with the independence of reduction modulo two relatively prime integers p and q.

1,725 citations

Journal ArticleDOI
TL;DR: The inherent strengths of biometrics-based authentication are outlined, the weak links in systems employing biometric authentication are identified, and new solutions for eliminating these weak links are presented.
Abstract: Because biometrics-based authentication offers several advantages over other authentication methods, there has been a significant surge in the use of biometrics for user authentication in recent years. It is important that such biometrics-based authentication systems be designed to withstand attacks when employed in security-critical applications, especially in unattended remote applications such as e-commerce. In this paper we outline the inherent strengths of biometrics-based authentication, identify the weak links in systems employing biometrics-based authentication, and present new solutions for eliminating some of these weak links. Although, for illustration purposes, fingerprint authentication is used throughout, our analysis extends to other biometrics-based methods.

1,709 citations

Journal ArticleDOI
TL;DR: This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.
Abstract: Frequencies from 100 GHz to 3 THz are promising bands for the next generation of wireless communication systems because of the wide swaths of unused and unexplored spectrum. These frequencies also offer the potential for revolutionary applications that will be made possible by new thinking, and advances in devices, circuits, software, signal processing, and systems. This paper describes many of the technical challenges and opportunities for wireless communication and sensing applications above 100 GHz, and presents a number of promising discoveries, novel approaches, and recent results that will aid in the development and implementation of the sixth generation (6G) of wireless networks, and beyond. This paper shows recent regulatory and standard body rulings that are anticipating wireless products and services above 100 GHz and illustrates the viability of wireless cognition, hyper-accurate position location, sensing, and imaging. This paper also presents approaches and results that show how long distance mobile communications will be supported to above 800 GHz since the antenna gains are able to overcome air-induced attenuation, and present methods that reduce the computational complexity and simplify the signal processing used in adaptive antenna arrays, by exploiting the Special Theory of Relativity to create a cone of silence in over-sampled antenna arrays that improve performance for digital phased array antennas. Also, new results that give insights into power efficient beam steering algorithms, and new propagation and partition loss models above 100 GHz are given, and promising imaging, array processing, and position location results are presented. The implementation of spatial consistency at THz frequencies, an important component of channel modeling that considers minute changes and correlations over space, is also discussed. This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.

1,352 citations

Journal ArticleDOI
TL;DR: This article presents a large-dimensional and autonomous network architecture that integrates space, air, ground, and underwater networks to provide ubiquitous and unlimited wireless connectivity and identifies several promising technologies for the 6G ecosystem.
Abstract: A key enabler for the intelligent information society of 2030, 6G networks are expected to provide performance superior to 5G and satisfy emerging services and applications. In this article, we present our vision of what 6G will be and describe usage scenarios and requirements for multi-terabyte per second (Tb/s) and intelligent 6G networks. We present a large-dimensional and autonomous network architecture that integrates space, air, ground, and underwater networks to provide ubiquitous and unlimited wireless connectivity. We also discuss artificial intelligence (AI) and machine learning [1], [2] for autonomous networks and innovative air-interface design. Finally, we identify several promising technologies for the 6G ecosystem, including terahertz (THz) communications, very-large-scale antenna arrays [i.e., supermassive (SM) multiple-input, multiple-output (MIMO)], large intelligent surfaces (LISs) and holographic beamforming (HBF), orbital angular momentum (OAM) multiplexing, laser and visible-light communications (VLC), blockchain-based spectrum sharing, quantum communications and computing, molecular communications, and the Internet of Nano-Things.

1,332 citations