scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Segmentation and classification in MRI and US fetal imaging: Recent trends and future prospects.

TL;DR: This review covers state‐of‐the‐art segmentation and classification methodologies for the whole fetus and, more specifically, the fetal brain, lungs, liver, heart and placenta in magnetic resonance imaging and (3D) ultrasound for the first time.
About: This article is published in Medical Image Analysis.The article was published on 2019-01-01. It has received 70 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: CA-Net as mentioned in this paper proposes a joint spatial attention module to make the network focus more on the foreground region and a novel channel attention module is proposed to adaptively recalibrate channel-wise feature responses and highlight the most relevant feature channels.
Abstract: Accurate medical image segmentation is essential for diagnosis and treatment planning of diseases. Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance for automatic medical image segmentation. However, they are still challenged by complicated conditions where the segmentation target has large variations of position, shape and scale, and existing CNNs have a poor explainability that limits their application to clinical decisions. In this work, we make extensive use of multiple attentions in a CNN architecture and propose a comprehensive attention-based CNN (CA-Net) for more accurate and explainable medical image segmentation that is aware of the most important spatial positions, channels and scales at the same time. In particular, we first propose a joint spatial attention module to make the network focus more on the foreground region. Then, a novel channel attention module is proposed to adaptively recalibrate channel-wise feature responses and highlight the most relevant feature channels. Also, we propose a scale attention module implicitly emphasizing the most salient feature maps among multiple scales so that the CNN is adaptive to the size of an object. Extensive experiments on skin lesion segmentation from ISIC 2018 and multi-class segmentation of fetal MRI found that our proposed CA-Net significantly improved the average segmentation Dice score from 87.77% to 92.08% for skin lesion, 84.79% to 87.08% for the placenta and 93.20% to 95.88% for the fetal brain respectively compared with U-Net. It reduced the model size to around 15 times smaller with close or even better accuracy compared with state-of-the-art DeepLabv3+. In addition, it has a much higher explainability than existing networks by visualizing the attention weight maps. Our code is available at https://github.com/HiLab-git/CA-Net .

205 citations

Journal ArticleDOI
TL;DR: This work makes extensive use of multiple attentions in a CNN architecture and proposes a comprehensive attention-based CNN (CA-Net) for more accurate and explainable medical image segmentation that is aware of the most important spatial positions, channels and scales at the same time.
Abstract: Accurate medical image segmentation is essential for diagnosis and treatment planning of diseases. Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance for automatic medical image segmentation. However, they are still challenged by complicated conditions where the segmentation target has large variations of position, shape and scale, and existing CNNs have a poor explainability that limits their application to clinical decisions. In this work, we make extensive use of multiple attentions in a CNN architecture and propose a comprehensive attention-based CNN (CA-Net) for more accurate and explainable medical image segmentation that is aware of the most important spatial positions, channels and scales at the same time. In particular, we first propose a joint spatial attention module to make the network focus more on the foreground region. Then, a novel channel attention module is proposed to adaptively recalibrate channel-wise feature responses and highlight the most relevant feature channels. Also, we propose a scale attention module implicitly emphasizing the most salient feature maps among multiple scales so that the CNN is adaptive to the size of an object. Extensive experiments on skin lesion segmentation from ISIC 2018 and multi-class segmentation of fetal MRI found that our proposed CA-Net significantly improved the average segmentation Dice score from 87.77% to 92.08% for skin lesion, 84.79% to 87.08% for the placenta and 93.20% to 95.88% for the fetal brain respectively compared with U-Net. It reduced the model size to around 15 times smaller with close or even better accuracy compared with state-of-the-art DeepLabv3+. In addition, it has a much higher explainability than existing networks by visualizing the attention weight maps. Our code is available at this https URL

174 citations


Cites background from "Segmentation and classification in ..."

  • ...and the placenta is important for fetal growth assessment and motion correction [41]....

    [...]

Journal ArticleDOI
TL;DR: Deep features are extracted from the inceptionv3 model, in which score vector is acquired from softmax and supplied to the quantum variational classifier (QVR) for discrimination between glioma, meningiomas, no tumor, and pituitary tumor to prove the proposed model's effectiveness.
Abstract: A brain tumor is an abnormal enlargement of cells if not properly diagnosed. Early detection of a brain tumor is critical for clinical practice and survival rates. Brain tumors arise in a variety of shapes, sizes, and features, with variable treatment options. Manual detection of tumors is difficult, time-consuming, and error-prone. Therefore, a significant requirement for computerized diagnostics systems for accurate brain tumor detection is present. In this research, deep features are extracted from the inceptionv3 model, in which score vector is acquired from softmax and supplied to the quantum variational classifier (QVR) for discrimination between glioma, meningioma, no tumor, and pituitary tumor. The classified tumor images have been passed to the proposed Seg-network where the actual infected region is segmented to analyze the tumor severity level. The outcomes of the reported research have been evaluated on three benchmark datasets such as Kaggle, 2020-BRATS, and local collected images. The model achieved greater than 90% detection scores to prove the proposed model's effectiveness.

22 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors proposed a simple yet effective residual learning diagnosis system (RLDS) for diagnosing fetal CHD to improve diagnostic accuracy, which adopts convolutional neural networks to extract discriminative features of the fetal cardiac anatomical structures.

20 citations

Journal ArticleDOI
TL;DR: The results suggest that the model used has a high potential to help cardiologists complete the initial screening for fetal congenital heart disease and a strong correlation between the predicted septal defects and ground truth as a mean average precision (mAP).
Abstract: Accurate screening for septal defects is important for supporting radiologists’ interpretative work. Some previous studies have proposed semantic segmentation and object detection approaches to carry out fetal heart detection; unfortunately, the models could not segment different objects of the same class. The semantic segmentation method segregates regions that only contain objects from the same class. In contrast, the fetal heart may contain multiple objects, such as the atria, ventricles, valves, and aorta. Besides, blurry boundaries (shadows) or a lack of consistency in the acquisition ultrasonography can cause wide variations. This study utilizes Mask-RCNN (MRCNN) to handle fetal ultrasonography images and employ it to detect and segment defects in heart walls with multiple objects. To our knowledge, this is the first study involving a medical application for septal defect detection using instance segmentation. The use of MRCNN architecture with ResNet50 as a backbone and a 0.0001 learning rate allows for two times faster training of the model on fetal heart images compared to other object detection methods, such as Faster-RCNN (FRCNN). We demonstrate a strong correlation between the predicted septal defects and ground truth as a mean average precision (mAP). As shown in the results, the proposed MRCNN model achieves good performance in multiclass detection of the heart chamber, with 97.59% for the right atrium, 99.67% for the left atrium, 86.17% for the left ventricle, 98.83% for the right ventricle, and 99.97% for the aorta. We also report competitive results for the defect detection of holes in the atria and ventricles via semantic and instance segmentation. The results show that the mAP for MRCNN is about 99.48% and 82% for FRCNN. We suggest that evaluation and prediction with our proposed model provide reliable detection of septal defects, including defects in the atria, ventricles, or both. These results suggest that the model used has a high potential to help cardiologists complete the initial screening for fetal congenital heart disease.

19 citations


Cites background or methods from "Segmentation and classification in ..."

  • ...Unfortunately, such methods (with threshold-based techniques, for example) yield the best results when the regions of interest in an image exhibit a massive difference in strength from the background of the image, but this results in more similar images with problems, dramatically reducing the efficiency and decreasing the applicability of these methods [6], [27]....

    [...]

  • ...It can aid doctors in making more accurate treatment plans [27]....

    [...]

  • ...The segmentation process is the key to exploring fetal heart abnormalities, especially defect conditions [27]....

    [...]

References
More filters
Book ChapterDOI
05 Oct 2015
TL;DR: In this article, a machine learning-based method was proposed to classify unlabeled fetal ultrasound images, which utilizes a translation and orientation invariant feature which captures the appearance of a region at multiple spatial resolutions.
Abstract: In this paper, we propose a novel machine learning based method to categorize unlabeled fetal ultrasound images. The proposed method guides the learning of a Random Forests classifier to extract features from regions inside the images where meaningful structures exist. The new method utilizes a translation and orientation invariant feature which captures the appearance of a region at multiple spatial resolutions. Evaluated on a large real world clinical dataset (~30K images from a hospital database), our method showed very promising categorization accuracy (accuracytop1 is 75% while accuracytop2 is 91%).

42 citations

Journal ArticleDOI
TL;DR: The segmentation method was shown to be robust to different types of initialization and to provide accurate results, with an average overlap measure of 0.89 when comparing with manual segmentations.
Abstract: The development of 3-D ultrasonic probes and 3-D ultrasound (3DUS) imaging offers new functionalities that call for specific image processing developments. In this paper, we propose an original method for the segmentation of the utero-fetal unit (UFU) from 3DUS volumes, acquired during the first trimester of gestation. UFU segmentation is required for a number of tasks, such as precise organ delineation, 3-D modeling, quantitative measurements, and evaluation of the clinical impact of 3-D imaging. The segmentation problem is formulated as the optimization of a partition of the image into two classes of tissues: the amniotic fluid and the fetal tissues. A Bayesian formulation of the partition problem integrates statistical models of the intensity distributions in each tissue class and regularity constraints on the contours. An energy functional is minimized using a level set implementation of a deformable model to identify the optimal partition. We propose to combine Rayleigh, Normal, Exponential, and Gamma distribution models to compute the region homogeneity constraints. We tested the segmentation method on a database of 19 antenatal 3DUS images. Promising results were obtained, showing the flexibility of the level set formulation and the interest of learning the most appropriate statistical models according to the idiosyncrasies of the data and the tissues. The segmentation method was shown to be robust to different types of initialization and to provide accurate results, with an average overlap measure of 0.89 when comparing with manual segmentations.

42 citations


"Segmentation and classification in ..." refers methods in this paper

  • ...The approach implemented by Anquez et al. (2013) used a ayesian formulation to partition the US into amniotic fluid and etal tissues....

    [...]

Proceedings ArticleDOI
23 Jun 2008
TL;DR: A novel principled probabilistic model that combines discriminative and generative classifiers with contextual information and sequential sampling is introduced that automatically displays standardized planes and produces biometric measurements of the fetal anatomies.
Abstract: The use of 3-D ultrasound data has several advantages over 2-D ultrasound for fetal biometric measurements, such as considerable decrease in the examination time, possibility of post-exam data processing by experts and the ability to produce 2-D views of the fetal anatomies in orientations that cannot be seen in common 2-D ultrasound exams. However, the search for standardized planes and the precise localization of fetal anatomies in ultrasound volumes are hard and time consuming processes even for expert physicians and sonographers. The relative low resolution in ultrasound volumes, small size of fetus anatomies and inter-volume position, orientation and size variability make this localization problem even more challenging. In order to make the plane search and fetal anatomy localization problems completely automatic, we introduce a novel principled probabilistic model that combines discriminative and generative classifiers with contextual information and sequential sampling. We implement a system based on this model, where the user queries consist of semantic keywords that represent anatomical structures of interest. After queried, the system automatically displays standardized planes and produces biometric measurements of the fetal anatomies. Experimental results on a held-out test set show that the automatic measurements are within the inter-user variability of expert users. It resolves for position, orientation and size of three different anatomies in less than 10 seconds in a dual-core computer running at 1.7 GHz.

39 citations

Journal ArticleDOI
TL;DR: The feasibility of preoperative planning with magnetic resonance imaging, 3-dimensional reconstruction, and volume-rendering techniques in twin-to-twin transfusion syndrome treated by endoscopic laser ablation of communicating vessels is illustrated.

38 citations


"Segmentation and classification in ..." refers methods in this paper

  • ...Previously, uks et al. (2001) studied the anatomy of each amniotic cavity, the oint of placental insertion of the umbilical cord and the location f the inter-twin membrane in relation to the port placement. hree models were used to calculate the optimum port entry point, s well as the length and…...

    [...]

Posted Content
TL;DR: An automatic method to describe clinically useful information about scanning, and to guide image interpretation in ultrasound (US) videos of the fetal heart to achieve performance on par with expert annotations is presented.
Abstract: We present an automatic method to describe clinically useful information about scanning, and to guide image interpretation in ultrasound (US) videos of the fetal heart. Our method is able to jointly predict the visibility, viewing plane, location and orientation of the fetal heart at the frame level. The contributions of the paper are three-fold: (i) a convolutional neural network architecture is developed for a multi-task prediction, which is computed by sliding a 3x3 window spatially through convolutional maps. (ii) an anchor mechanism and Intersection over Union (IoU) loss are applied for improving localization accuracy. (iii) a recurrent architecture is designed to recursively compute regional convolutional features temporally over sequential frames, allowing each prediction to be conditioned on the whole video. This results in a spatial-temporal model that precisely describes detailed heart parameters in challenging US videos. We report results on a real-world clinical dataset, where our method achieves performance on par with expert annotations.

37 citations