scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Selectable Ultrasensitive Detection of Hg(2+) with Rhodamine 6G-Modified Nanoporous Gold Optical Sensor.

12 Jul 2016-Scientific Reports (Nature Publishing Group)-Vol. 6, Iss: 1, pp 29611-29611
TL;DR: An extremely sensitive fluorescence sensor has been developed for selectively detection of mercury ions based on metallophilic Hg2+-Au+ interactions, which results in an effective release of pre-adsorbed rhodamine 6G (R6G) molecules from the nanoporous gold substrate, associated with a significant decrease of fluorescence intensity.
Abstract: An extremely sensitive fluorescence sensor has been developed for selectively detection of mercury ions based on metallophilic Hg2+-Au+ interactions, which results in an effective release of pre-adsorbed rhodamine 6G (R6G) molecules from the nanoporous gold substrate, associated with a significant decrease of fluorescence intensity. The optical sensor has a detection sensitivity down to 0.6 pM for Hg2+ and CH3Hg+ ions, in particular a superior selectivity in a complex aqueous system containing 13 different types of metal ions, meanwhile maintaining a long-term stability after 10 cycles. Such a fluorescence sensor combining multiple advantages therefore present promising potentials in various applications.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The Pt@NP-AuSn/Ni/CFP possesses long-term stability of sensing AA, DA and UA and presents great anti-interference towards a variety of common compounds in body fluid.

119 citations

Journal ArticleDOI
TL;DR: The development of a simple, highly sensitive and selective aggregation-induced emission (AIE)-based turn-on probe for both inorganic mercury ions and organicmercury species is reported, based on mercury ion-promoted transmetalation reaction of aryl boronic acid.
Abstract: Methylmercury (CH3Hg+) is the common form of organic mercury and is more toxic than its inorganic or elemental forms. Mercury is emanated in the course of various natural events and human activities and converts to methylmercury by anaerobic organisms. CH3Hg+ are ingested by fish and subsequently bioaccumulated in their tissue and, eventually, enter the human diet, causing serious health issues. Therefore, selective and sensitive detection of bioaccumulated CH3Hg+ in fish samples is essential. Herein, the development of a simple, highly sensitive and selective aggregation-induced emission (AIE)-based turn-on probe for both inorganic mercury ions and organicmercury species is reported. The probe’s function is based on mercury ion-promoted transmetalation reaction of aryl boronic acid. The probe, a tetraphenylethylene (TPE)–monoboronic acid (1), was successfully utilized for AIE-based fluorescence imaging study on methylmercury-contaminated live cells and zebrafish for the first time. Both Hg(II) and CH3Hg+...

89 citations

Journal ArticleDOI
TL;DR: In this paper, two optical sensors have been developed for Hg2+ ions with very low concentration in the range of nanomolar (nM) or picomolar(pM) depending on the type of capping agents and based on photoluminescence quenching of CdTe QDs.

44 citations

Journal ArticleDOI
TL;DR: New chemosensor RPy, containing the rhodamine and 2,6-pyridinedicarboxaldehyde functionality, is designed and synthesized for the selective detection of mercury (II) (Hg2+) ion in aqueous DMSO solvents with high selectivity and sensitivity over the series of other competing metal ions.

29 citations

References
More filters
Journal ArticleDOI
22 Mar 2001-Nature
TL;DR: It is demonstrated that nanoporosity in metals is due to an intrinsic dynamical pattern formation process, and that chemically tailored nanoporous gold made by dealloying Ag-Au should be suitable for sensor applications, particularly in a biomaterials context.
Abstract: Dealloying is a common corrosion process during which an alloy is 'parted' by the selective dissolution of the most electrochemically active of its elements. This process results in the formation of a nanoporous sponge composed almost entirely of the more noble alloy constituents. Although considerable attention has been devoted to the morphological aspects of the dealloying process, its underlying physical mechanism has remained unclear. Here we propose a continuum model that is fully consistent with experiments and theoretical simulations of alloy dissolution, and demonstrate that nanoporosity in metals is due to an intrinsic dynamical pattern formation process. That is, pores form because the more noble atoms are chemically driven to aggregate into two-dimensional clusters by a phase separation process (spinodal decomposition) at the solid-electrolyte interface, and the surface area continuously increases owing to etching. Together, these processes evolve porosity with a characteristic length scale predicted by our continuum model. We expect that chemically tailored nanoporous gold made by dealloying Ag-Au should be suitable for sensor applications, particularly in a biomaterials context.

2,348 citations

Journal ArticleDOI
TL;DR: A highly selective and sensitive colorimetric detection method for Hg that relies on thymidine–Hg–thymidine coordination chemistry and complementary DNA–Au NPs with deliberately designed T–T mismatches is presented.
Abstract: Mercury is a widespread pollutant with distinct toxicological profiles, and it exists in a variety of different forms (metallic, ionic, and as part of organic and inorganic salts and complexes). Solvated mercuric ion (Hg), one of the most stable inorganic forms of mercury, is a caustic and carcinogenic material with high cellular toxicity. The most common organic source of mercury, methyl mercury, can accumulate in the human body through the food chain and cause serious and permanent damage to the brain with both acute and chronic toxicity. Methyl mercury is generated by microbial biomethylation in aquatic sediments from water-soluble mercuric ion (Hg). Therefore, routine detection of Hg is central to the environmental monitoring of rivers and larger bodies of water and for evaluating the safety of aquatically derived food supplies. Several methods for the detection of Hg, based upon organic fluorophores or chromophores, semiconductor nanocrystals, cyclic voltammetry, polymeric materials, proteins, and microcantilevers, have been developed. Colorimetric methods, in particular, are extremely attractive because they can be easily read out with the naked eye, in some cases at the point of use. Although there are now several chromophoric colorimetric sensors for Hg, all of them are either limited with respect to sensitivity (current limit of detection 1 mm) and selectivity, kinetically unstable, or incompatible with aqueous environments. Recently, DNA-functionalized gold nanoparticles (DNA– Au NPs) have been used in a variety of forms for the detection of proteins, oligonucleotides, certain metal ions, and other small molecules. DNA–Au NPs have high extinction coefficients (3–5 orders of magnitude higher than those of organic dye molecules) and unique distancedependent optical properties that can be chemically programmed through the use of specific DNA interconnects, which allows one, in certain cases, to detect targets of interest through colorimetric means. Moreover, these structures, when hybridized to complementary particles, exhibit extremely sharp melting transitions, which have been used to enhance the selectivity of detection systems based upon them. By using such an approach, one can typically detect nucleic acid targets in the low nanomolar to high picomolar target concentration range in colorimetric format. The ability to use such particles to detect Hg in the nanomolar concentration range in colorimetric format would be a significant advance, especially when one considers that commercial systems for detecting Hg rely on cumbersome inductively coupled plasma approaches that are not suitable for point-of-use applications. Herein, we present a highly selective and sensitive colorimetric detection method for Hg that relies on thymidine–Hg–thymidine coordination chemistry and complementary DNA–Au NPs with deliberately designed T–T mismatches. When two complementary DNA–Au NPs are combined, they form DNA-linked aggregates that can dissociate reversibly with a concomitant purple-to-red color change. 28] For our novel colorimetric Hg assay, however, we prepared two types of Au NPs (designated as probe A and probe B, see the Supporting Information), each functionalized with different thiolated-DNA sequences (probe A: 5’HS-C10-A10-T-A103’, probe B: 5’HS-C10-T10-T-T103’), which are complementary except for a single thymidine–thymidine mismatch (shown in bold; Scheme 1). Importantly, these particles also form stable aggregates and exhibit the characteristic sharp melting transitions (full width at half maximum< 1 8C) associated with aggregates formed from perfectly complementary particles, but with a lower melting temperature Tm. [17, 18] Since it is known that Hg will coordinate selectively to the bases that make up a T–T mismatch, we hypothesized that Hg would

1,295 citations

Journal ArticleDOI
TL;DR: The three modern "faces" of mercury are the authors' perceptions of risk from the exposure of billions of people to methyl mercury in fish, mercury vapor from amalgam tooth fillings, and ethyl mercury in the form of thimerosal added as an antiseptic to widely used vaccines.
Abstract: The three modern "faces" of mercury are our perceptions of risk from the exposure of billions of people to methyl mercury in fish, mercury vapor from amalgam tooth fillings, and ethyl mercury in the form of thimerosal added as an antiseptic to widely used vaccines. In this article I review human exposure to and the toxicology of each of these three species of mercury. Mechanisms of action are discussed where possible. Key gaps in our current knowledge are identified from the points of view both of risk assessment and of mechanisms of action.

975 citations