scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms

22 Jan 2020-Chemical Reviews (Chem Rev)-Vol. 120, Iss: 2, pp 683-733
TL;DR: The key factors affecting the catalytic activity/selectivity, in particular, the geometric and electronic structure of the active sites, are discussed with the aim to extract fundamental principles for the development of efficient and selective catalysts in hydrogenation as well as other transformations.
Abstract: Selective catalytic hydrogenation has wide applications in both petrochemical and fine chemical industries, however, it remains challenging when two or multiple functional groups coexist in the substrate. To tackle this challenge, the "active site isolation" strategy has been proved effective, and various approaches to the site isolation have been developed. In this review, we have summarized these approaches, including adsorption/grafting of N/S-containing organic molecules on the metal surface, partial covering of active metal surface by metal oxides either via doping or through strong metal-support interaction, confinement of active metal nanoparticles in micro- or mesopores of the supports, formation of bimetallic alloys or intermetallics or core@shell structures with a relatively inert metal (IB and IIB) or nonmetal element (B, C, S, etc.), and construction of single-atom catalysts on reducible oxides or inert metals. Both advantages and disadvantages of each approach toward the site isolation have been discussed for three types of chemoselective hydrogenation reactions, including alkynes/dienes to monoenes, α,β-unsaturated aldehydes/ketones to the unsaturated alcohols, and substituted nitroarenes to the corresponding anilines. The key factors affecting the catalytic activity/selectivity, in particular, the geometric and electronic structure of the active sites, are discussed with the aim to extract fundamental principles for the development of efficient and selective catalysts in hydrogenation as well as other transformations.
Citations
More filters
Journal ArticleDOI
TL;DR: This article summarized the recent progress in understanding OER mechanisms, which include the conventional adsorbate evolution mechanism (AEM) and lattice-oxygen-mediated mechanism (LOM) from both theoretical and experimental aspects, and introduced strategies to reduce overpotential.
Abstract: Electricity-driven water splitting can facilitate the storage of electrical energy in the form of hydrogen gas. As a half-reaction of electricity-driven water splitting, the oxygen evolution reaction (OER) is the major bottleneck due to the sluggish kinetics of this four-electron transfer reaction. Developing low-cost and robust OER catalysts is critical to solving this efficiency problem in water splitting. The catalyst design has to be built based on the fundamental understanding of the OER mechanism and the origin of the reaction overpotential. In this article, we summarize the recent progress in understanding OER mechanisms, which include the conventional adsorbate evolution mechanism (AEM) and lattice-oxygen-mediated mechanism (LOM) from both theoretical and experimental aspects. We start with the discussion on the AEM and its linked scaling relations among various reaction intermediates. The strategies to reduce overpotential based on the AEM and its derived descriptors are then introduced. To further reduce the OER overpotential, it is necessary to break the scaling relation of HOO* and HO* intermediates in conventional AEM to go beyond the activity limitation of the volcano relationship. Strategies such as stabilization of HOO*, proton acceptor functionality, and switching the OER pathway to LOM are discussed. The remaining questions on the OER and related perspectives are also presented at the end.

1,107 citations

Journal ArticleDOI
TL;DR: A compositional encyclopedia of SACs is provided, celebrating the 10th anniversary of the introduction of this term, and examines the coordination structures and associated properties accessed through distinct single-atom-host combinations and relate them to their main applications in thermo-, electro-, and photocatalysis.
Abstract: Isolated atoms featuring unique reactivity are at the heart of enzymatic and homogeneous catalysts. In contrast, although the concept has long existed, single-atom heterogeneous catalysts (SACs) have only recently gained prominence. Host materials have similar functions to ligands in homogeneous catalysts, determining the stability, local environment, and electronic properties of isolated atoms and thus providing a platform for tailoring heterogeneous catalysts for targeted applications. Within just a decade, we have witnessed many examples of SACs both disrupting diverse fields of heterogeneous catalysis with their distinctive reactivity and substantially enriching our understanding of molecular processes on surfaces. To date, the term SAC mostly refers to late transition metal-based systems, but numerous examples exist in which isolated atoms of other elements play key catalytic roles. This review provides a compositional encyclopedia of SACs, celebrating the 10th anniversary of the introduction of this term. By defining single-atom catalysis in the broadest sense, we explore the full elemental diversity, joining different areas across the whole periodic table, and discussing historical milestones and recent developments. In particular, we examine the coordination structures and associated properties accessed through distinct single-atom-host combinations and relate them to their main applications in thermo-, electro-, and photocatalysis, revealing trends in element-specific evolution, host design, and uses. Finally, we highlight frontiers in the field, including multimetallic SACs, atom proximity control, and possible applications for multistep and cascade reactions, identifying challenges, and propose directions for future development in this flourishing field.

505 citations

Journal ArticleDOI
TL;DR: In this review, oxide supported single-atom catalysts are discussed about their synthetic procedures, characterizations, and reaction mechanism in thermocatalysis, such as water-gas shift reaction, selective oxidation/hydrogenation, and coupling reactions.
Abstract: Metal atoms dispersed on the oxide supports constitute a large category of single-atom catalysts. In this review, oxide supported single-atom catalysts are discussed about their synthetic procedures, characterizations, and reaction mechanism in thermocatalysis, such as water-gas shift reaction, selective oxidation/hydrogenation, and coupling reactions. Some typical oxide materials, including ferric oxide, cerium oxide, titanium dioxide, aluminum oxide, and so on, are intentionally mentioned for the unique roles as supports in anchoring metal atoms and taking part in the catalytic reactions. The interactions between metal atoms and oxide supports are summarized to give a picture on how to stabilize the atomic metal centers, and rationally tune the geometric structures and electronic states of single atoms. Furthermore, several directions in fabricating single-atom catalysts with improved performance are proposed on the basis of state-of-the-art understanding in metal-oxide interactions.

352 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes the recent process of heterogeneous supported single atoms, nanoclusters, and nanoparticles catalysts in electrocatalytic reactions, respectively, and figures out the construct strategies and design concepts based on their strengths and weaknesses.
Abstract: Metal-based electrocatalysts with different sizes (single atoms, nanoclusters, and nanoparticles) show different catalytic behaviors for various electrocatalytic reactions. Regulating the coordination environment of active sites with precision to rationally design an efficient electrocatalyst is of great significance for boosting electrocatalytic reactions. This review summarizes the recent process of heterogeneous supported single atoms, nanoclusters, and nanoparticles catalysts in electrocatalytic reactions, respectively, and figures out the construct strategies and design concepts based on their strengths and weaknesses. Specifically, four key factors for enhancing electrocatalytic performance, including electronic structure, coordination environment, support property, and interfacial interactions are proposed to provide an overall comprehension to readers in this field. Finally, some insights into the current challenges and future opportunities of the heterogeneous supported electrocatalysts are provided.

311 citations

Journal ArticleDOI
TL;DR: An overview of recent progress in investigations of graphene-based SACs is provided, selectively focusing on the stability of metal single-atoms anchored on different sites of graphene support and the catalytic performances of graphene theses for different chemical reactions, including thermocatalysis and electrocatalysis.
Abstract: Research on heterogeneous single-atom catalysts (SACs) has become an emerging frontier in catalysis science because of their advantages in high utilization of noble metals, precisely identified active sites, high selectivity, and tunable activity. Graphene, as a one-atom-thick two-dimensional carbon material with unique structural and electronic properties, has been reported to be a superb support for SACs. Herein, we provide an overview of recent progress in investigations of graphene-based SACs. Among the large number of publications, we will selectively focus on the stability of metal single-atoms (SAs) anchored on different sites of graphene support and the catalytic performances of graphene-based SACs for different chemical reactions, including thermocatalysis and electrocatalysis. We will summarize the fundamental understandings on the electronic structures and their intrinsic connection with catalytic properties of graphene-based SACs, and also provide a brief perspective on the future design of efficient SACs with graphene and graphene-like materials.

274 citations

References
More filters
Journal ArticleDOI
TL;DR: The Co₃O₄/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions, making it a high-performance non-precious metal-based bi-catalyst for both ORR and OER.
Abstract: Catalysts for oxygen reduction and evolution reactions are at the heart of key renewable-energy technologies including fuel cells and water splitting. Despite tremendous efforts, developing oxygen electrode catalysts with high activity at low cost remains a great challenge. Here, we report a hybrid material consisting of Co₃O₄ nanocrystals grown on reduced graphene oxide as a high-performance bi-functional catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Although Co₃O₄ or graphene oxide alone has little catalytic activity, their hybrid exhibits an unexpected, surprisingly high ORR activity that is further enhanced by nitrogen doping of graphene. The Co₃O₄/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions. The same hybrid is also highly active for OER, making it a high-performance non-precious metal-based bi-catalyst for both ORR and OER. The unusual catalytic activity arises from synergetic chemical coupling effects between Co₃O₄ and graphene.

4,898 citations

Journal ArticleDOI
TL;DR: Density functional theory calculations show that the high catalytic activity correlates with the partially vacant 5d orbitals of the positively charged, high-valent Pt atoms, which help to reduce both the CO adsorption energy and the activation barriers for CO oxidation.
Abstract: Platinum-based heterogeneous catalysts are critical to many important commercial chemical processes, but their efficiency is extremely low on a per metal atom basis, because only the surface active-site atoms are used. Catalysts with single-atom dispersions are thus highly desirable to maximize atom efficiency, but making them is challenging. Here we report the synthesis of a single-atom catalyst that consists of only isolated single Pt atoms anchored to the surfaces of iron oxide nanocrystallites. This single-atom catalyst has extremely high atom efficiency and shows excellent stability and high activity for both CO oxidation and preferential oxidation of CO in H-2. Density functional theory calculations show that the high catalytic activity correlates with the partially vacant 5d orbitals of the positively charged, high-valent Pt atoms, which help to reduce both the CO adsorption energy and the activation barriers for CO oxidation.

4,446 citations

Journal ArticleDOI
22 Apr 2011-Science
TL;DR: A family of non–precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power.
Abstract: The prohibitive cost of platinum for catalyzing the cathodic oxygen reduction reaction (ORR) has hampered the widespread use of polymer electrolyte fuel cells. We describe a family of non-precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power. The approach uses polyaniline as a precursor to a carbon-nitrogen template for high-temperature synthesis of catalysts incorporating iron and cobalt. The most active materials in the group catalyze the ORR at potentials within ~60 millivolts of that delivered by state-of-the-art carbon-supported platinum, combining their high activity with remarkable performance stability for non-precious metal catalysts (700 hours at a fuel cell voltage of 0.4 volts) as well as excellent four-electron selectivity (hydrogen peroxide yield <1.0%).

3,464 citations

Journal ArticleDOI
TL;DR: Recent advances in preparation, characterization, and catalytic performance of SACs are highlighted, with a focus on single atoms anchored to metal oxides, metal surfaces, and graphene, offering the potential for applications in a variety of industrial chemical reactions.
Abstract: Supported metal nanostructures are the most widely used type of heterogeneous catalyst in industrial processes. The size of metal particles is a key factor in determining the performance of such catalysts. In particular, because low-coordinated metal atoms often function as the catalytically active sites, the specific activity per metal atom usually increases with decreasing size of the metal particles. However, the surface free energy of metals increases significantly with decreasing particle size, promoting aggregation of small clusters. Using an appropriate support material that strongly interacts with the metal species prevents this aggregation, creating stable, finely dispersed metal clusters with a high catalytic activity, an approach industry has used for a long time. Nevertheless, practical supported metal catalysts are inhomogeneous and usually consist of a mixture of sizes from nanoparticles to subnanometer clusters. Such heterogeneity not only reduces the metal atom efficiency but also frequent...

3,051 citations

Journal Article
TL;DR: In this article, a family of non-precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power.
Abstract: Fuel cell catalysts synthesized from abundant metals approach the performance and durability of platinum at lower cost. The prohibitive cost of platinum for catalyzing the cathodic oxygen reduction reaction (ORR) has hampered the widespread use of polymer electrolyte fuel cells. We describe a family of non–precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power. The approach uses polyaniline as a precursor to a carbon-nitrogen template for high-temperature synthesis of catalysts incorporating iron and cobalt. The most active materials in the group catalyze the ORR at potentials within ~60 millivolts of that delivered by state-of-the-art carbon-supported platinum, combining their high activity with remarkable performance stability for non–precious metal catalysts (700 hours at a fuel cell voltage of 0.4 volts) as well as excellent four-electron selectivity (hydrogen peroxide yield <1.0%).

2,974 citations