scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Self-Catalyzed, Self-Limiting Growth of Glucose Oxidase-Mimicking Gold Nanoparticles

Weijie Luo1, Changfeng Zhu1, Shao Su1, Di Li1, Yao He1, Qing Huang1, Chunhai Fan1 
30 Nov 2010-ACS Nano (ACS Nano)-Vol. 4, Iss: 12, pp 7451-7458
TL;DR: A gold nanoparticle (AuNPs)-based self-catalyzed and self-limiting system that exploits the glucose oxidase-like catalytic activity of AuNPs to provide a new method for controlled synthesis of novel nanomaterials, design of "smart" self- Limiting nanomedicine, as well as in-depth understanding of self-Limiting systems in nature.
Abstract: Size and shape of nanoparticles are generally controlled by external influence factors such as reaction temperature, time, precursor, and/or surfactant concentration. Lack of external influence may eventually lead to unregulated growth of nanoparticles and possibly loss of their nanoscale properties. Here we report a gold nanoparticle (AuNPs)-based self-catalyzed and self-limiting system that exploits the glucose oxidase-like catalytic activity of AuNPs. We find that the AuNP-catalyzed glucose oxidation in situ produces hydrogen peroxide (H(2)O(2)) that induces the AuNPs seeded growth in the presence of chloroauric add (HAuCl(4)). This crystal growth of AuNPs is internally regulated via two negative feedback factors, size-dependent activity decrease of AuNPs and product (gluconic acid)-induced surface passivation, leading to a rapidly self-limiting system. Interestingly, the size, shape, and catalytic activities of AuNPs are simultaneously controlled in this system. We expect that it provides a new method for controlled synthesis of novel nanomaterials, design of "smart" self-limiting nanomedicine, as well as in-depth understanding of self-limiting systems in nature.
Citations
More filters
Journal ArticleDOI
TL;DR: This review discusses various nanomaterials that have been explored to mimic different kinds of enzymes and covers their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal.
Abstract: Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

2,951 citations

Journal ArticleDOI
TL;DR: This review systematically introduces the classification, catalytic mechanism, activity regulation as well as recent research progress of nanozymes in the field of biosensing, environmental protection, and disease treatments, etc. in the past years.
Abstract: Because of the high catalytic activities and substrate specificity, natural enzymes have been widely used in industrial, medical, and biological fields, etc. Although promising, they often suffer from intrinsic shortcomings such as high cost, low operational stability, and difficulties of recycling. To overcome these shortcomings, researchers have been devoted to the exploration of artificial enzyme mimics for a long time. Since the discovery of ferromagnetic nanoparticles with intrinsic horseradish peroxidase-like activity in 2007, a large amount of studies on nanozymes have been constantly emerging in the next decade. Nanozymes are one kind of nanomaterials with enzymatic catalytic properties. Compared with natural enzymes, nanozymes have the advantages such as low cost, high stability and durability, which have been widely used in industrial, medical, and biological fields. A thorough understanding of the possible catalytic mechanisms will contribute to the development of novel and high-efficient nanozymes, and the rational regulations of the activities of nanozymes are of great significance. In this review, we systematically introduce the classification, catalytic mechanism, activity regulation as well as recent research progress of nanozymes in the field of biosensing, environmental protection, and disease treatments, etc. in the past years. We also propose the current challenges of nanozymes as well as their future research focus. We anticipate this review may be of significance for the field to understand the properties of nanozymes and the development of novel nanomaterials with enzyme mimicking activities.

1,549 citations

Journal ArticleDOI
TL;DR: The authors show that a suitable combination of an enzyme and iron nanoparticles loaded on dendritic silica induces apoptosis of cancer cells in response to the glucose-reliant and mild acidic microenvironment.
Abstract: Tumor cells metabolize in distinct pathways compared with most normal tissue cells. The resulting tumor microenvironment would provide characteristic physiochemical conditions for selective tumor modalities. Here we introduce a concept of sequential catalytic nanomedicine for efficient tumor therapy by designing and delivering biocompatible nanocatalysts into tumor sites. Natural glucose oxidase (GOD, enzyme catalyst) and ultrasmall Fe3O4 nanoparticles (inorganic nanozyme, Fenton reaction catalyst) have been integrated into the large pore-sized and biodegradable dendritic silica nanoparticles to fabricate the sequential nanocatalyst. GOD in sequential nanocatalyst could effectively deplete glucose in tumor cells, and meanwhile produce a considerable amount of H2O2 for subsequent Fenton-like reaction catalyzed by Fe3O4 nanoparticles in response to mild acidic tumor microenvironment. Highly toxic hydroxyl radicals are generated through these sequential catalytic reactions to trigger the apoptosis and death of tumor cells. The current work manifests a proof of concept of catalytic nanomedicine by approaching selectivity and efficiency concurrently for tumor therapeutics.

943 citations

Journal ArticleDOI
TL;DR: Graphene oxide could serve as a modulator to greatly improve the catalytic activity of lysozyme-stabilized gold nanoclusters at neutral pH, which will have great potential for applications in biological systems and the incorporation of modulator into artificial enzymes can offer a facile but highly effective way to improve their overall catalytic performance.
Abstract: ConspectusNatural enzymes, exquisite biocatalysts mediating every biological process in living organisms, are able to accelerate the rate of chemical reactions up to 1019 times for specific substrates and reactions. However, the practical application of enzymes is often hampered by their intrinsic drawbacks, such as low operational stability, sensitivity of catalytic activity to environmental conditions, and high costs in preparation and purification. Therefore, the discovery and development of artificial enzymes is highly desired. Recently, the merging of nanotechnology with biology has ignited extensive research efforts for designing functional nanomaterials that exhibit various properties intrinsic to enzymes. As a promising candidate for artificial enzymes, catalytically active nanomaterials (nanozymes) show several advantages over natural enzymes, such as controlled synthesis in low cost, tunability in catalytic activities, as well as high stability against stringent conditions.In this Account, we fo...

931 citations

Journal ArticleDOI
TL;DR: Progress in photochromic materials is described, from systems in solution to modified functional surfaces, and further development of these photo-switchable systems into practical applications as well as existing challenges are discussed and put in prospect.
Abstract: Photochromic materials are a family of compounds which can undergo reversible photo-switches between two different states or isomers with remarkably different properties. Inspired by their smart photo-switchable characteristics, a variety of light-driven functional materials have been exploited, such as ultrahigh-density optical data storage, molecular switches, logic gates, molecular wires, optic/electronic devices, sensors, bio-imaging and so on. This review commences with a brief description of exciting progress in this field, from systems in solution to modified functional surfaces. Further development of these photo-switchable systems into practical applications as well as existing challenges are also discussed and put in prospect.

751 citations

References
More filters
Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
22 Aug 1997-Science
TL;DR: A highly selective, colorimetric polynucleotide detection method based on mercaptoalkyloligonucleotide-modified gold nanoparticle probes is reported, which can detect about 10 femtomoles of an oligonucleotide.
Abstract: A highly selective, colorimetric polynucleotide detection method based on mercaptoalkyloligonucleotide-modified gold nanoparticle probes is reported. Introduction of a single-stranded target oligonucleotide (30 bases) into a solution containing the appropriate probes resulted in the formation of a polymeric network of nanoparticles with a concomitant red-to-pinkish/purple color change. Hybridization was facilitated by freezing and thawing of the solutions, and the denaturation of these hybrid materials showed transition temperatures over a narrow range that allowed differentiation of a variety of imperfect targets. Transfer of the hybridization mixture to a reverse-phase silica plate resulted in a blue color upon drying that could be detected visually. The unoptimized system can detect about 10 femtomoles of an oligonucleotide.

4,334 citations


"Self-Catalyzed, Self-Limiting Growt..." refers background in this paper

  • ...Modification of 13 nm AuNPs with thiolated DNA followed the previously reported protocol.(39) Briefly, the aqueous Au nanoparticle solution and thiolated DNA (final concentration of 1....

    [...]

Journal ArticleDOI
TL;DR: Nathaniel L. Rosi focuses on the rational assembly of DNA-modified nanostructures into larger-scale materials and their roles in biodiagnostic screening for nucleic acids.
Abstract: In the last 10 years the field of molecular diagnostics has witnessed an explosion of interest in the use of nanomaterials in assays for gases, metal ions, and DNA and protein markers for many diseases. Intense research has been fueled by the need for practical, robust, and highly sensitive and selective detection agents that can address the deficiencies of conventional technologies. Chemists are playing an important role in designing and fabricating new materials for application in diagnostic assays. In certain cases assays based upon nanomaterials have offered significant advantages over conventional diagnostic systems with regard to assay sensitivity, selectivity, and practicality. Some of these new methods have recently been reviewed elsewhere with a focus on the materials themselves or as subclassifications in more generalized overviews of biological applications of nanomaterials.1-7 We intend to review some of the major advances and milestones in the field of detection systems based upon nanomaterials and their roles in biodiagnostic screening for nucleic acids, * To whom correspondence should be addressed. Phone: 847-4913907. Fax: 847-467-5123. E-mail: chadnano@northwestern.edu. Nathaniel L. Rosi earned his B.A. degree at Grinnell College (1999) and his Ph.D. degree from the University of Michigan (2003), where he studied the design, synthesis, and gas storage applications of metal−organic frameworks under the guidance of Professor Omar M. Yaghi. In 2003 he began postdoctoral studies as a member of Professor Mirkin’s group at Northwestern University. His current research focuses on the rational assembly of DNA-modified nanostructures into larger-scale materials.

4,308 citations

Journal ArticleDOI
TL;DR: The features of nanoparticle therapeutics that distinguish them from previous anticancer therapies are highlighted, and how these features provide the potential for therapeutic effects that are not achievable with other modalities are described.
Abstract: Nanoparticles — particles in the size range 1–100 nm — are emerging as a class of therapeutics for cancer. Early clinical results suggest that nanoparticle therapeutics can show enhanced efficacy, while simultaneously reducing side effects, owing to properties such as more targeted localization in tumours and active cellular uptake. Here, we highlight the features of nanoparticle therapeutics that distinguish them from previous anticancer therapies, and describe how these features provide the potential for therapeutic effects that are not achievable with other modalities. While large numbers of preclinical studies have been published, the emphasis here is placed on preclinical and clinical studies that are likely to affect clinical investigations and their implications for advancing the treatment of patients with cancer.

3,975 citations


"Self-Catalyzed, Self-Limiting Growt..." refers background in this paper

  • ..., insulin(1)) is known to induce severe side effects or even death, which motivates great efforts to design selflimiting “smart drugs”, particularly via the approach of nanoscale materials-based nanomedicine.(2,3) Interestingly, self-limiting phenomena are also often observed in the nano world, for example, crystal growth of nanoparticles....

    [...]

Journal ArticleDOI
11 Sep 1998-Science
TL;DR: Results suggest that supported clusters, in general, may have unusual catalytic properties as one dimension of the cluster becomes smaller than three atomic spacings.
Abstract: Gold clusters ranging in diameter from 1 to 6 nanometers have been prepared on single crystalline surfaces of titania in ultrahigh vacuum to investigate the unusual size dependence of the low-temperature catalytic oxidation of carbon monoxide. Scanning tunneling microscopy/spectroscopy (STM/STS) and elevated pressure reaction kinetics measurements show that the structure sensitivity of this reaction on gold clusters supported on titania is related to a quantum size effect with respect to the thickness of the gold islands; islands with two layers of gold are most effective for catalyzing the oxidation of carbon monoxide. These results suggest that supported clusters, in general, may have unusual catalytic properties as one dimension of the cluster becomes smaller than three atomic spacings.

3,912 citations