scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Self-Consistent Equations Including Exchange and Correlation Effects

15 Nov 1965-Physical Review (American Physical Society)-Vol. 140, Iss: 4, pp 1133-1142
TL;DR: In this paper, the Hartree and Hartree-Fock equations are applied to a uniform electron gas, where the exchange and correlation portions of the chemical potential of the gas are used as additional effective potentials.
Abstract: From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system of interacting electrons are developed. These methods are exact for systems of slowly varying or high density. For the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock equations, respectively. In these equations the exchange and correlation portions of the chemical potential of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective potential differs from that due to Slater by a factor of $\frac{2}{3}$.) Electronic systems at finite temperatures and in magnetic fields are also treated by similar methods. An appendix deals with a further correction for systems with short-wavelength density oscillations.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudopotential method, is reviewed.
Abstract: This article reviews the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudopotential method. Several specialized topics are treated, including the implementation for metals, the calculation of the response to macroscopic electric fields and their relevance to long-wavelength vibrations in polar materials, the response to strain deformations, and higher-order responses. The success of this methodology is demonstrated with a number of applications existing in the literature.

6,917 citations


Cites background or methods from "Self-Consistent Equations Including..."

  • ...The LDA is exact in the limit of high density or of a slowly varying charge-density distribution (Kohn and Sham, 1965)....

    [...]

  • ...This fact was used by Kohn and Sham (1965) to map the problem of a system of interacting electrons onto an equivalent noninteracting problem....

    [...]

  • ...The first problem can be handled by mapping the system onto an auxiliary system of noninteracting electrons (Kohn and Sham, 1965) and by making appropriate approximations along the lines described in the next subsection....

    [...]

  • ...In their original paper, Kohn and Sham (1965) proposed the assumption that each small volume of the system (so small that the charge density can be thought to be constant therein) contributes the same exchange-correlation energy as an equal volume of a homogeneous electron gas at the same density....

    [...]

  • ...…Cohen, and Martin, 1970) have been made possible over the past ten years by the achievements of density-functional theory (Hohenberg and Kohn, 1964; Kohn and Sham, 1965) and by the development of density-functional perturbation theory (Zein, 1984; Baroni et al., 1987a), which is a method for…...

    [...]

Journal ArticleDOI
TL;DR: In this article, a time-dependent version of density functional theory was proposed to deal with the non-perturbative quantum mechanical description of interacting many-body systems moving in a very strong timedependent external field.
Abstract: The response of an interacting many-particle system to a time-dependent external field can usually be treated within linear response theory. Due to rapid experimental progress in the field of laser physics, however, ultra-short laser pulses of very high intensity have become available in recent years. The electric field produced in such pulses can reach the strength of the electric field caused by atomic nuclei. If an atomic system is placed in the focus of such a laser pulse one observes a wealth of new phenomena [1] which cannot be explained by traditional perturbation theory. The non-perturbative quantum mechanical description of interacting particles moving in a very strong time-dependent external field therefore has become a prominent problem of theoretical physics. In principle, it requires a full solution of the time-dependent Schrodinger equation for the interacting many-body system, which is an exceedingly difficult task. In view of the success of density functional methods in the treatment of stationary many-body systems and in view of their numerical simplicity, a time-dependent version of density functional theory appears highly desirable, both within and beyond the regime of linear response.

6,874 citations

Journal ArticleDOI
TL;DR: An improved way of estimating the local tangent in the nudged elastic band method for finding minimum energy paths is presented, and examples given where a complementary method, the dimer method, is used to efficiently converge to the saddle point.
Abstract: An improved way of estimating the local tangent in the nudged elastic band method for finding minimum energy paths is presented. In systems where the force along the minimum energy path is large compared to the restoring force perpendicular to the path and when many images of the system are included in the elastic band, kinks can develop and prevent the band from converging to the minimum energy path. We show how the kinks arise and present an improved way of estimating the local tangent which solves the problem. The task of finding an accurate energy and configuration for the saddle point is also discussed and examples given where a complementary method, the dimer method, is used to efficiently converge to the saddle point. Both methods only require the first derivative of the energy and can, therefore, easily be applied in plane wave based density-functional theory calculations. Examples are given from studies of the exchange diffusion mechanism in a Si crystal, Al addimer formation on the Al(100) surfa...

6,825 citations

Journal ArticleDOI
TL;DR: The Materials Project (www.materialsproject.org) is a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials as discussed by the authors.
Abstract: Accelerating the discovery of advanced materials is essential for human welfare and sustainable, clean energy. In this paper, we introduce the Materials Project (www.materialsproject.org), a core program of the Materials Genome Initiative that uses high-throughput computing to uncover the properties of all known inorganic materials. This open dataset can be accessed through multiple channels for both interactive exploration and data mining. The Materials Project also seeks to create open-source platforms for developing robust, sophisticated materials analyses. Future efforts will enable users to perform ‘‘rapid-prototyping’’ of new materials in silico, and provide researchers with new avenues for cost-effective, data-driven materials design. © 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

6,566 citations

Journal Article
TL;DR: Chai and Head-Gordon as discussed by the authors proposed a long-range corrected (LC) hybrid density functional with Damped Atom-Atom Dispersion corrections, which is called ωB97X-D.
Abstract: Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections Jeng-Da Chai ∗ and Martin Head-Gordon † Department of Chemistry, University of California and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (Dated: June 14, 2008) We report re-optimization of a recently proposed long-range corrected (LC) hybrid density func- tionals [J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008)] to include empirical atom-atom dispersion corrections. The resulting functional, ωB97X-D yields satisfactory accuracy for thermochemistry, kinetics, and non-covalent interactions. Tests show that for non-covalent sys- tems, ωB97X-D shows slight improvement over other empirical dispersion-corrected density func- tionals, while for covalent systems and kinetics, it performs noticeably better. Relative to our previous functionals, such as ωB97X, the new functional is significantly superior for non-bonded interactions, and very similar in performance for bonded interactions. I. INTRODUCTION Due to its favorable cost-to-performance ratio, Kohn- Sham density-functional theory (KS-DFT) [1, 2] has be- come the most popular electronic structure theory for large-scale ground-state systems [3–5]. Its extension for treating excited-state systems [6, 7], time-dependent den- sity functional theory (TDDFT), has also been developed to the stage where it is now very widely used. The essential ingredient of KS-DFT, the exchange- correlation energy functional E xc , remains unknown and needs to be approximated. Semi-local gradient-corrected density functionals, though successful in many applica- tions, lead to qualitative failures in some circumstances, where the accurate treatment of non-locality of exchange- correlation hole becomes crucial. These situations occur mostly in the asymptotic regions of molecular systems, such as spurious self-interaction effects upon dissociation [8, 9] and dramatic failures for long-range charge-transfer excitations [10–12]. Widely used hybrid density function- als, like B3LYP [13, 14], do not qualitatively resolve these problems. These self-interaction errors can be qualitatively re- solved using the long-range corrected (LC) hybrid density functionals [15, 16, 18], which employ 100% Hartree-Fock (HF) exchange for long-range electron-electron interac- tions. This is accomplished by a partition of unity, using erf(ωr)/r for long-range (treated by HF exchange) and erfc(ωr)/r for short-range (treated by an exchange func- tional), with the parameter ω controlling the partition- ing. Over the past five years, the LC hybrid scheme has been attracting increasing attention [15] since its compu- tational cost is comparable with standard hybrid func- tionals [13]. However, LC functionals have tended to be inferior to the best hybrids for properties such as ther- mochemistry. ∗ Electronic † Author address: jdchai@berkeley.edu to whom correspondence should be addressed. Electronic address: mhg@cchem.berkeley.edu Recently we have improved the overall accuracy at- tainable with the LC functionals by using a systematic optimization procedure [18]. One important conclusion is that optimizing LC and hybrid functionals with identical numbers of parameters in their GGA exchange and cor- relation terms leads to noticeably better results for all properties using the LC form. The resulting LC func- tional is called ωB97. Further statistically significant improvement results from re-optimizing the entire func- tional with one extra parameter corresponding to an ad- justable fraction of short-range exact exchange, defining the ωB97X functional. Independent test sets covering thermochemistry and non-covalent interactions support these conclusions. However, problems associated with the lack of non-locality of the correlation hole, such as the lack of dispersion interactions (London forces), still remain, as the semi-local correlation functionals cannot capture long-range correlation effects [19, 20]. There have been significant efforts to develop a frame- work that can account for long-range dispersion effects within DFT. Zaremba and Kohn (ZK) [21] derived an exact expression for the second-order dispersion energy in terms of the exact density-density response functions of the two separate systems. To obtain a tractable non- local dispersion functional, Dobson and Dinite (DD) [22] made local density approximations to the ZK response functions. DD’s non-local correlation functional was ob- tained independently [23] by modifying the effective den- sity defined in the earlier work of Rapcewicz and Ashcroft Starting from the formally exact expression of KS- DFT, the adiabatic connection fluctuation-dissipation theorem (ACFDT), for the ground-state exchange- correlation energy, Langreth and co-workers [25] devel- oped a so-called van der Waals density functional (vdW- DF) by making a series of reasonable approximations to yield a computationally tractable scheme. Recently, Becke and Johnson (BJ) developed a series of post-HF correlation models with a novel treatment for dispersion interactions based on the exchange-hole dipole moment [26]. The origin of dispersion claimed in the BJ models was recently questioned by Alonso, and A.

6,345 citations