scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements

01 May 2002-ChemInform (American Chemical Society)-Vol. 11, Iss: 18
About: This article is published in ChemInform.The article was published on 2002-05-01. It has received 2822 citations till now. The article focuses on the topics: Fragment molecular orbital & Valence (chemistry).
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a modified basis set of supplementary diffuse s and p functions, multiple polarization functions (double and triple sets of d functions), and higher angular momentum polarization functions were defined for use with the 6.31G and 6.311G basis sets.
Abstract: Standard sets of supplementary diffuse s and p functions, multiple polarization functions (double and triple sets of d functions), and higher angular momentum polarization functions (f functions) are defined for use with the 6‐31G and 6‐311G basis sets. Preliminary applications of the modified basis sets to the calculation of the bond energy and hydrogenation energy of N2 illustrate that these functions can be very important in the accurate computation of reaction energies.

7,230 citations

Journal ArticleDOI
TL;DR: In this article, the 631G* and 6 31G* basis sets were extended through the second-row of the periodic table and the Hartree-Fock wave functions were used to obtain the equilibrium geometries for one-heavy-atom hydrides.
Abstract: The 6‐31G* and 6‐31G** basis sets previously introduced for first‐row atoms have been extended through the second‐row of the periodic table. Equilibrium geometries for one‐heavy‐atom hydrides calculated for the two‐basis sets and using Hartree–Fock wave functions are in good agreement both with each other and with the experimental data. HF/6‐31G* structures, obtained for two‐heavy‐atom hydrides and for a variety of hypervalent second‐row molecules, are also in excellent accord with experimental equilibrium geometries. No large deviations between calculated and experimental single bond lengths have been noted, in contrast to previous work on analogous first‐row compounds, where limiting Hartree–Fock distances were in error by up to a tenth of an angstrom. Equilibrium geometries calculated at the HF/6‐31G level are consistently in better agreement with the experimental data than are those previously obtained using the simple split‐valance 3‐21G basis set for both normal‐ and hypervalent compounds. Normal‐mode vibrational frequencies derived from 6‐31G* level calculations are consistently larger than the corresponding experimental values, typically by 10%–15%; they are of much more uniform quality than those obtained from the 3‐21G basis set. Hydrogenation energies calculated for normal‐ and hypervalent compounds are in moderate accord with experimental data, although in some instances large errors appear. Calculated energies relating to the stabilities of single and multiple bonds are in much better accord with the experimental energy differences.

6,870 citations

Journal ArticleDOI
TL;DR: The computed alignments of the molecular orbitals of the different complexes with the band edges of a model TiO(2) nanoparticle provide additional insights into the electronic factors governing the efficiency of dye-sensitized solar cell devices.
Abstract: We report a combined experimental and computational study of several ruthenium(II) sensitizers originated from the [Ru(dcbpyH2)2(NCS)2], N3, and [Ru(dcbpyH2)(tdbpy)(NCS)2], N621, (dcbpyH2 = 4,4‘-dicarboxy-2,2‘-bipyridine, tdbpy = 4,4‘-tridecyl-2,2‘-bipyridine) complexes. A purification procedure was developed to obtain pure N-bonded isomers of both types of sensitizers. The photovoltaic data of the purified N3 and N621 sensitizers adsorbed on TiO2 films in their monoprotonated and diprotonated state, exhibited remarkable power conversion efficiency at 1 sun, 11.18 and 9.57%, respectively. An extensive Density Functional Theory (DFT)−Time Dependent DFT study of these sensitizers in solution was performed, investigating the effect of protonation of the terminal carboxylic groups and of the counterions on the electronic structure and optical properties of the dyes. The calculated absorption spectra are in good agreement with the experiment, thus allowing a detailed assignment of the UV−vis spectral features ...

2,660 citations

Journal ArticleDOI
TL;DR: Geometries, relative energies, and electron density distributions in silacyclopropane and five of its isomers were investigated using ab initio methods in this article, where VinyIsilane was found to be the most stable isomer, and methyl substitution was preferred at the silicon end of both silaethylene and methyl silylene.

1,648 citations

Journal ArticleDOI
TL;DR: Jaguar as mentioned in this paper is an ab initio quantum chemical program that specializes in fast electronic structure predictions for molecular systems of medium and large size, such as density functional theory (DFT) and local second-order Moller-Plesset perturbation theory.
Abstract: Jaguar is an ab initio quantum chemical program that specializes in fast electronic structure predictions for molecular systems of medium and large size. Jaguar focuses on computational methods with reasonable computational scaling with the size of the system, such as density functional theory (DFT) and local second-order Moller–Plesset perturbation theory. The favorable scaling of the methods and the high efficiency of the program make it possible to conduct routine computations involving several thousand molecular orbitals. This performance is achieved through a utilization of the pseudospectral approximation and several levels of parallelization. The speed advantages are beneficial for applying Jaguar in biomolecular computational modeling. Additionally, owing to its superior wave function guess for transition-metal-containing systems, Jaguar finds applications in inorganic and bioinorganic chemistry. The emphasis on larger systems and transition metal elements paves the way toward developing Jaguar for its use in materials science modeling. The article describes the historical and new features of Jaguar, such as improved parallelization of many modules, innovations in ab initio pKa prediction, and new semiempirical corrections for nondynamic correlation errors in DFT. Jaguar applications in drug discovery, materials science, force field parameterization, and other areas of computational research are reviewed. Timing benchmarks and other results obtained from the most recent Jaguar code are provided. The article concludes with a discussion of challenges and directions for future development of the program. © 2013 Wiley Periodicals, Inc.

1,307 citations

References
More filters