scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Self-focusing and transverse instabilities of solitary waves

01 Jun 2000-Physics Reports (Elsevier)-Vol. 331, Iss: 4, pp 117-195
TL;DR: In this article, the authors discuss self-focusing of spatial optical solitons in diffractive nonlinear media due to either transverse (one more unbounded spatial dimension) or modulational (induced by temporal wave dispersion) instabilities, in the framework of the cubic nonlinear Schrodinger equation and its generalizations.
About: This article is published in Physics Reports.The article was published on 2000-06-01. It has received 356 citations till now. The article focuses on the topics: Soliton & Kadomtsev–Petviashvili equation.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a number of consequences of relativistic-strength optical fields are surveyed, including wakefield generation, a relativistically version of optical rectification, in which longitudinal field effects could be as large as the transverse ones.
Abstract: The advent of ultraintense laser pulses generated by the technique of chirped pulse amplification (CPA) along with the development of high-fluence laser materials has opened up an entirely new field of optics. The electromagnetic field intensities produced by these techniques, in excess of ${10}^{18}\phantom{\rule{0.3em}{0ex}}\mathrm{W}∕{\mathrm{cm}}^{2}$, lead to relativistic electron motion in the laser field. The CPA method is reviewed and the future growth of laser technique is discussed, including the prospect of generating the ultimate power of a zettawatt. A number of consequences of relativistic-strength optical fields are surveyed. In contrast to the nonrelativistic regime, these laser fields are capable of moving matter more effectively, including motion in the direction of laser propagation. One of the consequences of this is wakefield generation, a relativistic version of optical rectification, in which longitudinal field effects could be as large as the transverse ones. In addition to this, other effects may occur, including relativistic focusing, relativistic transparency, nonlinear modulation and multiple harmonic generation, and strong coupling to matter and other fields (such as high-frequency radiation). A proper utilization of these phenomena and effects leads to the new technology of relativistic engineering, in which light-matter interactions in the relativistic regime drives the development of laser-driven accelerator science. A number of significant applications are reviewed, including the fast ignition of an inertially confined fusion target by short-pulsed laser energy and potential sources of energetic particles (electrons, protons, other ions, positrons, pions, etc.). The coupling of an intense laser field to matter also has implications for the study of the highest energies in astrophysics, such as ultrahigh-energy cosmic rays, with energies in excess of ${10}^{20}\phantom{\rule{0.3em}{0ex}}\mathrm{eV}$. The laser fields can be so intense as to make the accelerating field large enough for general relativistic effects (via the equivalence principle) to be examined in the laboratory. It will also enable one to access the nonlinear regime of quantum electrodynamics, where the effects of radiative damping are no longer negligible. Furthermore, when the fields are close to the Schwinger value, the vacuum can behave like a nonlinear medium in much the same way as ordinary dielectric matter expanded to laser radiation in the early days of laser research.

1,459 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the theoretical and experimental progress on the study of matter-wave dark solitons in atomic Bose-Einstein condensates is presented.
Abstract: This review paper presents an overview of the theoretical and experimental progress on the study of matter-wave dark solitons in atomic Bose–Einstein condensates. Upon introducing the general framework, we discuss the statics and dynamics of single and multiple matter-wave dark solitons in the quasi one-dimensional setting, in higher dimensional settings, as well as in the dimensionality crossover regime. Special attention is paid to the connection between theoretical results, obtained by various analytical approaches, and relevant experimental observations.

373 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an overview of recent advances in the understanding of optical beams in nonlinear media with a spatially nonlocal nonlinear response, and discuss the impact of nonlocality on the modulational instability of plane waves, the collapse of finite-size beams, and the formation and interaction of spatial solitons.
Abstract: We present an overview of recent advances in the understanding of optical beams in nonlinear media with a spatially nonlocal nonlinear response. We discuss the impact of nonlocality on the modulational instability of plane waves, the collapse of finite-size beams, and the formation and interaction of spatial solitons.

331 citations

References
More filters
Book
Govind P. Agrawal1
01 Jan 1989
TL;DR: The field of nonlinear fiber optics has advanced enough that a whole book was devoted to it as discussed by the authors, which has been translated into Chinese, Japanese, and Russian languages, attesting to the worldwide activity in the field.
Abstract: Nonlinear fiber optics concerns with the nonlinear optical phenomena occurring inside optical fibers. Although the field ofnonlinear optics traces its beginning to 1961, when a ruby laser was first used to generate the second-harmonic radiation inside a crystal [1], the use ofoptical fibers as a nonlinear medium became feasible only after 1970 when fiber losses were reduced to below 20 dB/km [2]. Stimulated Raman and Brillouin scatterings in single-mode fibers were studied as early as 1972 [3] and were soon followed by the study of other nonlinear effects such as self- and crossphase modulation and four-wave mixing [4]. By 1989, the field ofnonlinear fiber optics has advanced enough that a whole book was devoted to it [5]. This book or its second edition has been translated into Chinese, Japanese, and Russian languages, attesting to the worldwide activity in the field of nonlinear fiber optics.

15,770 citations

Book
01 Jan 1974
TL;DR: In this paper, a general overview of the nonlinear theory of water wave dynamics is presented, including the Wave Equation, the Wave Hierarchies, and the Variational Method of Wave Dispersion.
Abstract: Introduction and General Outline. HYPERBOLIC WAVES. Waves and First Order Equations. Specific Problems. Burger's Equation. Hyperbolic Systems. Gas Dynamics. The Wave Equation. Shock Dynamics. The Propagation of Weak Shocks. Wave Hierarchies. DISPERSIVE WAVES. Linear Dispersive Waves. Wave Patterns. Water Waves. Nonlinear Dispersion and the Variational Method. Group Velocities, Instability, and Higher Order Dispersion. Applications of the Nonlinear Theory. Exact Solutions: Interacting Solitary Waves. References. Index.

8,808 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the thickness of the interface increases with increasing temperature and becomes infinite at the critical temperature Tc, and that at a temperature T just below Tc the interfacial free energy σ is proportional to (T c −T) 3 2.
Abstract: It is shown that the free energy of a volume V of an isotropic system of nonuniform composition or density is given by : NV∫V [f 0(c)+κ(▿c)2]dV, where NV is the number of molecules per unit volume, ▿c the composition or density gradient, f 0 the free energy per molecule of a homogeneous system, and κ a parameter which, in general, may be dependent on c and temperature, but for a regular solution is a constant which can be evaluated. This expression is used to determine the properties of a flat interface between two coexisting phases. In particular, we find that the thickness of the interface increases with increasing temperature and becomes infinite at the critical temperature Tc , and that at a temperature T just below Tc the interfacial free energy σ is proportional to (T c −T) 3 2 . The predicted interfacial free energy and its temperature dependence are found to be in agreement with existing experimental data. The possibility of using optical measurements of the interface thickness to provide an additional check of our treatment is briefly discussed.

8,720 citations

01 Oct 1966
TL;DR: In this method, non-linear susceptibility tensors are introduced which relate the induced dipole moment to a power series expansion in field strengths and the various experimental observations are described and interpreted in terms of this formalism.
Abstract: Recent advances in the field of nonlinear optical phenomena are reviewed with particular empphasis placed on such topics as parametric oscillation self-focusing and trapping of laser beams, and stimulated Raman, Rayleigh, and Brillouin scattering. The optical frequency radiation is treated classically in terms of the amplitudes and phases of the electromagnetic fields. The interactions of light waves in a mterial are then formulated in terms of Maxwell's equations and the electric dipole approximation. In this method, non-linear susceptibility tensors are introdueed which relate the induced dipole moment to a power series expansion in field strengths. The tensor nature and the frequency dependence of the nonlinearity coefficients are considered. The various experimental, observations are described and interpreted in terms of this formalism.

3,893 citations


"Self-focusing and transverse instab..." refers background in this paper

  • ...(2.1) are in nonlinear optics (see, e.g., a number of books, Shen, 1984; Boyd, 1992; Newell and Moloney, 1992; Agrawal, 1995)....

    [...]

  • ...…beams in two and three dimensions, including exponential saturation (e.g., Wilcox and Wilcox, 1975; Kaw et al., 1975; Vidal and Johnston, 1996), two-level type model (e.g., Marburger and Dawes, 1968; Gustafson et al., 1968), cubic}quintic nolinearity with a defocusing contribution of the…...

    [...]

Journal ArticleDOI
TL;DR: In this paper, a theoretical analysis of the stability of periodic wave trains to small disturbances in the form of a pair of side-band modes is presented, where the wave train becomes highly irregular far from its origin, even when the departures from periodicity are scarcely detectable at the start.
Abstract: The phenomenon in question arises when a periodic progressive wave train with fundamental frequency ω is formed on deep water—say by radiation from an oscillating paddle—and there are also present residual wave motions at adjacent side-band frequencies ω(1 ± δ), such as would be generated if the movement of the paddle suffered a slight modulation at low frequency. In consequence of coupling through the non-linear boundary conditions at the free surface, energy is then transferred from the primary motion to the side bands at a rate that, as will be shown herein, can increase exponentially as the interaction proceeds. The result is that the wave train becomes highly irregular far from its origin, even when the departures from periodicity are scarcely detectable at the start.In this paper a theoretical investigation is made into the stability of periodic wave trains to small disturbances in the form of a pair of side-band modes, and Part 2 which will follow is an account of some experimental observations in accord with the present predictions. The main conclusion of the theory is that infinitesimal disturbances of the type considered will undergo unbounded magnification if \[ 0 < \delta \leqslant (\sqrt{2})ka, \] where k and a are the fundamental wave-number and amplitude of the perturbed wave train. The asymptotic rate of growth is a maximum for δ = ka.

2,109 citations


"Self-focusing and transverse instab..." refers background in this paper

  • ...…(pulses) localized waves (Yuen and Ferguson, 1978), the e!ect observed experimentally in di!erent physical systems, e.g. in the #uid dynamics (Benjamin and Feir, 1967; Yuen and Lake, 1975; Melville, 1982; Su, 1982), nonlinear beam propagation (Campillo et al., 1973, 1974; Iturbe-Castillo et…...

    [...]

  • ...Modulational instability and breakup of a continuous-wave (c.w.) "eld of large intensity was "rst predicted and analyzed in the context of waves in #uids (Benjamin and Feir, 1967; Zakharov, 1968)....

    [...]