scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Self-organization of supramolecular helical dendrimers into complex electronic materials

TL;DR: This work finds that attaching conducting organic donor or acceptor groups to the apex of the dendrons leads to supramolecular nanometre-scale columns that contain in their cores π-stacks of donors, acceptors or donor–acceptor complexes exhibiting high charge carrier mobilities.
Abstract: The discovery of electrically conducting organic crystals1 and polymers1,2,3,4 has widened the range of potential optoelectronic materials5,6,7,8,9, provided these exhibit sufficiently high charge carrier mobilities6,7,8,9,10 and are easy to make and process. Organic single crystals have high charge carrier mobilities but are usually impractical11, whereas polymers have good processability but low mobilities1,12. Liquid crystals exhibit mobilities approaching those of single crystals and are suitable for applications13,14,15,16,17,18, but demanding fabrication and processing methods limit their use. Here we show that the self-assembly of fluorinated tapered dendrons can drive the formation of supramolecular liquid crystals with promising optoelectronic properties from a wide range of organic materials. We find that attaching conducting organic donor or acceptor groups to the apex of the dendrons leads to supramolecular nanometre-scale columns that contain in their cores π-stacks of donors, acceptors or donor–acceptor complexes exhibiting high charge carrier mobilities. When we use functionalized dendrons and amorphous polymers carrying compatible side groups, these co-assemble so that the polymer is incorporated in the centre of the columns through donor–acceptor interactions and exhibits enhanced charge carrier mobilities. We anticipate that this simple and versatile strategy for producing conductive π-stacks of aromatic groups, surrounded by helical dendrons, will lead to a new class of supramolecular materials suitable for electronic and optoelectronic applications.
Citations
More filters
Journal ArticleDOI
12 Aug 2004-Nature
TL;DR: A systematic attempt to determine the range of climate changes consistent with these uncertainties, based on a 53-member ensemble of model versions constructed by varying model parameters, which produces a range of regional changes much wider than indicated by traditional methods based on scaling the response patterns of an individual simulation.
Abstract: Comprehensive global climate models1 are the only tools that account for the complex set of processes which will determine future climate change at both a global and regional level. Planners are typically faced with a wide range of predicted changes from different models of unknown relative quality2,3, owing to large but unquantified uncertainties in the modelling process4. Here we report a systematic attempt to determine the range of climate changes consistent with these uncertainties, based on a 53-member ensemble of model versions constructed by varying model parameters. We estimate a probability density function for the sensitivity of climate to a doubling of atmospheric carbon dioxide levels, and obtain a 5–95 per cent probability range of 2.4–5.4 °C. Our probability density function is constrained by objective estimates of the relative reliability of different model versions, the choice of model parameters that are varied and their uncertainty ranges, specified on the basis of expert advice. Our ensemble produces a range of regional changes much wider than indicated by traditional methods based on scaling the response patterns of an individual simulation5,6.

1,616 citations

Journal ArticleDOI
TL;DR: New approaches to the functionalization of liquid crystals are described and it is shown how the design ofliquid crystals formed by supramolecular assembly and nano-segregation leads to the formation of a variety of new self-organized functional materials.
Abstract: In the 21st century, soft materials will become more important as functional materials because of their dynamic nature. Although soft materials are not as highly durable as hard materials, such as metals, ceramics, and engineering plastics, they can respond well to stimuli and the environment. The introduction of order into soft materials induces new dynamic functions. Liquid crystals are ordered soft materials consisting of self-organized molecules and can potentially be used as new functional materials for electron, ion, or molecular transporting, sensory, catalytic, optical, and bio-active materials. For this functionalization, unconventional materials design is required. Herein, we describe new approaches to the functionalization of liquid crystals and show how the design of liquid crystals formed by supramolecular assembly and nano-segregation leads to the formation of a variety of new self-organized functional materials.

1,400 citations

Journal ArticleDOI
TL;DR: This critical review covers various aspects of recent research on discotic liquid crystals, in particular, molecular design concepts, supramolecular structure, processing into ordered thin films and fabrication of electronic devices.
Abstract: Discotic (disc-like) molecules typically comprising a rigid aromatic core and flexible peripheral chains have been attracting growing interest because of their fundamental importance as model systems for the study of charge and energy transport and due to the possibilities of their application in organic electronic devices. This critical review covers various aspects of recent research on discotic liquid crystals, in particular, molecular design concepts, supramolecular structure, processing into ordered thin films and fabrication of electronic devices. The chemical structure of the conjugated core of discotic molecules governs, to a large extent, their intramolecular electronic properties. Variation of the peripheral flexible chains and of the aromatic core is decisive for the tuning of self-assembly in solution and in bulk. Supramolecular organization of discotic molecules can be effectively controlled by the choice of the processing methods. In particular, approaches to obtain suitable macroscopic orientations of columnar superstructures on surfaces, that is, planar uniaxial or homeotropic alignment, are discussed together with appropriate processing techniques. Finally, an overview of charge transport in discotic materials and their application in optoelectronic devices is given (234 references).

1,278 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review experimental and theoretical literature across several fields and conclude that the terms "pi stacking" and "pi-pi interactions" do not accurately describe the forces that drive association between aromatic molecules of the types most commonly studied in chemistry or biology laboratories.
Abstract: It has become common to reference “pi-stacking” forces or “pi–pi interactions” when describing the interactions between neighbouring aromatic rings. Here, we review experimental and theoretical literature across several fields and conclude that the terms “pi-stacking” and “pi–pi interactions” do not accurately describe the forces that drive association between aromatic molecules of the types most commonly studied in chemistry or biology laboratories. We therefore propose that these terms are misleading and should no longer be used. Even without these terms, electrostatic considerations relating to polarized pi systems, as described by Hunter and Sanders, have provided a good qualitative starting place for predicting and understanding the interactions between aromatics for almost two decades. More recent work, however, is revealing that direct electrostatic interactions between polarized atoms of substituents as well as solvation/desolvation effects in strongly interacting solvents must also be considered and even dominate in many circumstances.

1,172 citations

Journal ArticleDOI
TL;DR: It is likely that nanofabrication will underpin many technologies in the 21st century and the combination of supramolecular chemistry, materials science, and biomedicine allows application-based materials to be developed.
Abstract: It is likely that nanofabrication will underpin many technologies in the 21st century. Synthetic chemistry is a powerful approach to generate molecular structures that are capable of assembling into functional nanoscale architectures. There has been intense interest in self-assembling low-molecular-weight gelators, which has led to a general understanding of gelation based on the self-assembly of molecular-scale building blocks in terms of non-covalent interactions and packing parameters. The gelator molecules generate hierarchical, supramolecular structures that are macroscopically expressed in gel formation. Molecular modification can therefore control nanoscale assembly, a process that ultimately endows specific material function. The combination of supramolecular chemistry, materials science, and biomedicine allows application-based materials to be developed. Regenerative medicine and tissue engineering using molecular gels as nanostructured scaffolds for the regrowth of nerve cells has been demonstrated in vivo, and the prospect of using self-assembled fibers as one-dimensional conductors in gel materials has captured much interest in the field of nanoelectronics.

1,117 citations

References
More filters
Journal ArticleDOI
14 Oct 1999-Nature
TL;DR: In this article, the authors used thin-film, field effect transistor structures to probe the transport properties of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT.
Abstract: Self-organization in many solution-processed, semiconducting conjugated polymers results in complex microstructures, in which ordered microcrystalline domains are embedded in an amorphous matrix1. This has important consequences for electrical properties of these materials: charge transport is usually limited by the most difficult hopping processes and is therefore dominated by the disordered matrix, resulting in low charge-carrier mobilities2 (⩽10-5 cm2 V-1 s-1). Here we use thin-film, field-effect transistor structures to probe the transport properties of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT. Self-organization in P3HT results in a lamella structure with two-dimensional conjugated sheets formed by interchain stacking. We find that, depending on processing conditions, the lamellae can adopt two different orientations—parallel and normal to the substrate—the mobilities of which differ by more than a factor of 100, and can reach values as high as 0.1 cm2 V-1 s-1 (refs 3, 4). Optical spectroscopy of the field-induced charge, combined with the mobility anisotropy, reveals the two-dimensional interchain character of the polaronic charge carriers, which exhibit lower relaxation energies than the corresponding radical cations on isolated one-dimensional chains. The possibility of achieving high mobilities via two-dimensional transport in self-organized conjugated lamellae is important for applications of polymer transistors in logic circuits5 and active-matrix displays4,6.

4,306 citations

Journal ArticleDOI
01 Mar 2001-Nature
TL;DR: A stepwise model for the formation of a transcriptionally silent heterochromatin is provided: SUV39H1 places a ‘methyl marker’ on histone H3, which is then recognized by HP1 through its chromo domain, which may also explain the stable inheritance of theheterochromatic state.
Abstract: Heterochromatin protein 1 (HP1) is localized at heterochromatin sites where it mediates gene silencing. The chromo domain of HP1 is necessary for both targeting and transcriptional repression. In the fission yeast Schizosaccharomyces pombe, the correct localization of Swi6 (the HP1 equivalent) depends on Clr4, a homologue of the mammalian SUV39H1 histone methylase. Both Clr4 and SUV39H1 methylate specifically lysine 9 of histone H3 (ref. 6). Here we show that HP1 can bind with high affinity to histone H3 methylated at lysine 9 but not at lysine 4. The chromo domain of HP1 is identified as its methyl-lysine-binding domain. A point mutation in the chromo domain, which destroys the gene silencing activity of HP1 in Drosophila, abolishes methyl-lysine-binding activity. Genetic and biochemical analysis in S. pombe shows that the methylase activity of Clr4 is necessary for the correct localization of Swi6 at centromeric heterochromatin and for gene silencing. These results provide a stepwise model for the formation of a transcriptionally silent heterochromatin: SUV39H1 places a 'methyl marker' on histone H3, which is then recognized by HP1 through its chromo domain. This model may also explain the stable inheritance of the heterochromatic state.

2,811 citations

Journal ArticleDOI
10 Aug 2000-Nature
TL;DR: A functional interdependence of site-specific H3 tail modifications is revealed and a dynamic mechanism for the regulation of higher-order chromatin is suggested.
Abstract: The organization of chromatin into higher-order structures influences chromosome function and epigenetic gene regulation. Higher-order chromatin has been proposed to be nucleated by the covalent modification of histone tails and the subsequent establishment of chromosomal subdomains by non-histone modifier factors. Here we show that human SUV39H1 and murine Suv39h1—mammalian homologues of Drosophila Su(var)3-9 and of Schizosaccharomyces pombe clr4—encode histone H3-specific methyltransferases that selectively methylate lysine 9 of the amino terminus of histone H3 in vitro. We mapped the catalytic motif to the evolutionarily conserved SET domain, which requires adjacent cysteine-rich regions to confer histone methyltransferase activity. Methylation of lysine 9 interferes with phosphorylation of serine 10, but is also influenced by pre-existing modifications in the amino terminus of H3. In vivo, deregulated SUV39H1 or disrupted Suv39h activity modulate H3 serine 10 phosphorylation in native chromatin and induce aberrant mitotic divisions. Our data reveal a functional interdependence of site-specific H3 tail modifications and suggest a dynamic mechanism for the regulation of higher-order chromatin.

2,796 citations

Journal ArticleDOI
12 Jun 1998-Science
TL;DR: An all-polymer semiconductor integrated device is demonstrated with a high-mobility conjugated polymer field-effect transistor driving a polymer light-emitting diode (LED) of similar size, which represents a step toward all- polymer optoelectronic integrated circuits such as active-matrix polymer LED displays.
Abstract: An all-polymer semiconductor integrated device is demonstrated with a high-mobility conjugated polymer field-effect transistor (FET) driving a polymer light-emitting diode (LED) of similar size. The FET uses regioregular poly(hexylthiophene). Its performance approaches that of inorganic amorphous silicon FETs, with field-effect mobilities of 0.05 to 0.1 square centimeters per volt second and ON-OFF current ratios of >10 6 . The high mobility is attributed to the formation of extended polaron states as a result of local self-organization, in contrast to the variable-range hopping of self-localized polarons found in more disordered polymers. The FET-LED device represents a step toward all-polymer optoelectronic integrated circuits such as active-matrix polymer LED displays.

2,657 citations


"Self-organization of supramolecular..." refers background in this paper

  • ...We have elaborated a library based on a semifluorinated tapered dendron(19,20) that was functionalized at its apex with a diversity of electroactive donor (D) and acceptor (A) groups, (3,4,5)12F8G1-D/ A, (Figs 1 and 2)....

    [...]

  • ...a, Donor (D1–4) and acceptor (A1) groups of (3,4,5) 12F8G1-D/A....

    [...]

Journal ArticleDOI
10 Aug 2001-Science
TL;DR: Self-organization of liquid crystalline and crystalline-conjugated materials has been used to create, directly from solution, thin films with structures optimized for use in photodiodes, demonstrating that complex structures can be engineered from novel materials by means of simple solution-processing steps and may enable inexpensive, high-performance, thin-film photovoltaic technology.
Abstract: Self-organization of liquid crystalline and crystalline-conjugated materials has been used to create, directly from solution, thin films with structures optimized for use in photodiodes. The discotic liquid crystal hexa-peri-hexabenzocoronene was used in combination with a perylene dye to produce thin films with vertically segregated perylene and hexabenzocoronene, with large interfacial surface area. When incorporated into diode structures, these films show photovoltaic response with external quantum efficiencies of more than 34 percent near 490 nanometers. These efficiencies result from efficient photoinduced charge transfer between the hexabenzocoronene and perylene, as well as from effective transport of charges through vertically segregated perylene and hexabenzocoronene pi systems. This development demonstrates that complex structures can be engineered from novel materials by means of simple solution-processing steps and may enable inexpensive, high-performance, thin-film photovoltaic technology.

2,234 citations