scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA.

01 Oct 2011-Nature Chemistry (Nature Research)-Vol. 3, Iss: 10, pp 775-781
TL;DR: The amplification of DNA is demonstrated within a self-reproducible cationic giant vesicle (host) and with the addition of a vesicular membrane precursor, this system represents a step forward in the construction of an advanced model protocell.
Abstract: The self-replication process of a giant vesicle encapsulating double-stranded DNA has been observed, which represents a supramolecular approach to the construction of a protocell. Growth and division of the vesicle occurred rapidly on addition of a membrane precursor, and amplified DNA was distributed amongst the resulting daughter giant vesicles.
Citations
More filters
Journal ArticleDOI
TL;DR: This paper presents a probabilistic analysis of the stationary phase replacement of Na6(CO3)(SO4)/ Na2SO4 in horseshoe clusters and shows clear trends in the number of stationary phases and in the stationary phases of Na2CO3.
Abstract: Kepa Ruiz-Mirazo,†,∥ Carlos Briones,‡,∥ and Andreś de la Escosura* †Biophysics Unit (CSIC-UPV/EHU), Leioa, and Department of Logic and Philosophy of Science, University of the Basque Country, Avenida de Tolosa 70, 20080 Donostia−San Sebastiań, Spain ‡Department of Molecular Evolution, Centro de Astrobiología (CSIC−INTA, associated to the NASA Astrobiology Institute), Carretera de Ajalvir, Km 4, 28850 Torrejoń de Ardoz, Madrid, Spain Organic Chemistry Department, Universidad Autońoma de Madrid, Cantoblanco, 28049 Madrid, Spain

616 citations

Journal ArticleDOI
TL;DR: A review focused on the exchange of chemical signals between liposome-based synthetic cells (operating by gene expression) and biological cells, as well as between two populations of synthetic cells.
Abstract: The bottom-up branch of synthetic biology includes-among others-innovative studies that combine cell-free protein synthesis with liposome technology to generate cell-like systems of minimal complexity, often referred to as synthetic cells. The functions of this type of synthetic cell derive from gene expression, hence they can be programmed in a modular, progressive and customizable manner by means of ad hoc designed genetic circuits. This experimental scenario is rapidly expanding and synthetic cell research already counts numerous successes. Here, we present a review focused on the exchange of chemical signals between liposome-based synthetic cells (operating by gene expression) and biological cells, as well as between two populations of synthetic cells. The review includes a short presentation of the "molecular communication technologies," briefly discussing their promises and challenges.

433 citations


Cites background from "Self-reproduction of supramolecular..."

  • ..., 2018), nor those based on new artificial molecules (Kurihara et al., 2011; Marguet et al., 2013; Taylor et al., 2015)....

    [...]

  • ...SCs with the capacity of self-producing all their own constitutive components, and which possibly growand-divide as living cells do, are still missing, although interesting reports that show progress in this directions have been published (Kurihara et al., 2011)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, an original cofactor-dependent three-enzyme cascade reaction is performed, using either compatible or incompatible enzymes, which takes place across multiple compartments, which shows structural resemblance to the cell and its organelles.
Abstract: Enzyme-filled polystyrene-b-poly(3-(isocyano-L-alanyl-aminoethyl)thiophene) (PS-b-PIAT) nanoreactors are encapsulated together with free enzymes and substrates in a larger polybutadiene-b-poly(ethylene oxide) (PB-b-PEO) polymersome, forming a multicompartmentalized structure, which shows structural resemblance to the cell and its organelles. An original cofactor-dependent three-enzyme cascade reaction is performed, using either compatible or incompatible enzymes, which takes place across multiple compartments.

422 citations

Journal ArticleDOI
TL;DR: The ultimate goal here is to assemble a fully man-made cell that displays functionality and adaptivity as advanced as that found in nature, which will not only provide insight into the fundamental processes in natural cells but also pave the way for new applications of such artificial cells.
Abstract: ConspectusCells are highly advanced microreactors that form the basis of all life. Their fascinating complexity has inspired scientists to create analogs from synthetic and natural components using a bottom-up approach. The ultimate goal here is to assemble a fully man-made cell that displays functionality and adaptivity as advanced as that found in nature, which will not only provide insight into the fundamental processes in natural cells but also pave the way for new applications of such artificial cells.In this Account, we highlight our recent work and that of others on the construction of artificial cells. First, we will introduce the key features that characterize a living system; next, we will discuss how these have been imitated in artificial cells. First, compartmentalization is crucial to separate the inner chemical milieu from the external environment. Current state-of-the-art artificial cells comprise subcompartments to mimic the hierarchical architecture of eukaryotic cells and tissue. Further...

391 citations

01 Jan 2013
TL;DR: An original cofactor-dependent three-enzyme cascade reaction is performed, using either compatible or incompatible enzymes, which takes place across multiple compartments.

385 citations

References
More filters
MonographDOI
26 May 1995
TL;DR: From molecular to supramolescular chemistry: concepts and language of supramolecular chemistry, molecular recognition, information, complementarity molecular receptors - design principles and more.
Abstract: Part 1 From molecular to supramolecular chemistry: concepts and language of supramolecular chemistry. Part 2 Molecular recognition: recognition, information, complementarity molecular receptors - design principles spherical recognition - cryptates of metal cations tetrahedral recognition by macrotricyclic cryptands recognition of ammonium ions and related substrates binding and recognition of neutral moelcules. Part 3 Anion co-ordination chemistry and the recognition of anionic substrates. Part 4 Coreceptor molecules and multiple recognition: dinuclear and polynuclear metal ion cryptates linear recognition of molecular length by ditopic coreceptors heterotopic coreceptors - cyclophane receptors, amphiphilic receptors, large molecular cage multiple recognition in metalloreceptors supramolecular dynamics. Part 5 Supramolecular reactivity and catalysis: catalysis by reactive macrocyclic cation receptor molecules catalysis by reactive anion receptor molecules catalysis with cyclophane type receptors supramolecular metallo-catalysis cocatalysis - catalysis of synthetic reactions biomolecular and abiotic catalysis. Part 6 Transport processes and carrier design: carrier-mediated transport cation-transport processes - cation carriers anion transport processes - anion carriers coupled transport processes electron-coupled transpoort in a redox gradient proton-coupled transport in a pH gradient light-coupled transport processes transfer via transmembrane channels. Part 7 From supermolecules to polymolecular assemblies: heterogeneous molecular recognition - supramolecular solid materials from endoreceptors to exoreceptors - molecular recognition at surfaces molecular and supramolecular morphogenesis supramolecular heterogeneous catalysis. Part 8 Molecular and supramolecular devices: molecular recognition, information and signals - semiochemistry supramolecular photochemistry - molecular and supramolecular photonic devices light conversion and energy transfer devices photosensitive molecular receptors photoinduced electron transfer in photoactive devices photoinduced reactions in supramolecular species non-linear optical properties of supramolecular species supramolecular effects in photochemical hole burning molecular and supramolecular electronic devices supramolecular electrochemistry electron conducting devices - molecular wires polarized molecular wires - rectifying devices modified and switchable molecular wires molecular magnetic devices molecular and supramolecular ionic devices tubular mesophases. (Part contents).

8,168 citations

Journal ArticleDOI
02 Jul 2010-Science
TL;DR: The design, synthesis, and assembly of the 1.08–mega–base pair Mycoplasma mycoides JCVI-syn1.0 genome starting from digitized genome sequence information and its transplantation into a M. capricolum recipient cell to create new cells that are controlled only by the synthetic chromosome are reported.
Abstract: We report the design, synthesis, and assembly of the 1.08-mega-base pair Mycoplasma mycoides JCVI-syn1.0 genome starting from digitized genome sequence information and its transplantation into a M. capricolum recipient cell to create new M. mycoides cells that are controlled only by the synthetic chromosome. The only DNA in the cells is the designed synthetic DNA sequence, including "watermark" sequences and other designed gene deletions and polymorphisms, and mutations acquired during the building process. The new cells have expected phenotypic properties and are capable of continuous self-replication.

2,256 citations

Journal ArticleDOI
07 Feb 1997-Science
TL;DR: The addition of either linear λ-phage or plasmid DNA to CLs resulted in an unexpected topological transition from liposomes to optically birefringent liquid-crystalline condensed globules, revealing a novel multilamellar structure with alternating lipid bilayer and DNA monolayers.
Abstract: Cationic liposomes complexed with DNA (CL-DNA) are promising synthetically based nonviral carriers of DNA vectors for gene therapy. The solution structure of CL-DNA complexes was probed on length scales from subnanometer to micrometer by synchrotron x-ray diffraction and optical microscopy. The addition of either linear lambda-phage or plasmid DNA to CLs resulted in an unexpected topological transition from liposomes to optically birefringent liquid-crystalline condensed globules. X-ray diffraction of the globules revealed a novel multilamellar structure with alternating lipid bilayer and DNA monolayers. The lambda-DNA chains form a one-dimensional lattice with distinct interhelical packing regimes. Remarkably, in the isoelectric point regime, the lambda-DNA interaxial spacing expands between 24.5 and 57.1 angstroms upon lipid dilution and is indicative of a long-range electrostatic-induced repulsion that is possibly enhanced by chain undulations.

1,341 citations

Journal ArticleDOI
14 May 2009-Nature
TL;DR: It is shown that activated pyrimidine ribonucleotides can be formed in a short sequence that bypasses free ribose and the nucleobases, and instead proceeds through arabinose amino-oxazoline and anhydronucleoside intermediates.
Abstract: At some stage in the origin of life, an informational polymer must have arisen by purely chemical means. According to one version of the 'RNA world' hypothesis this polymer was RNA, but attempts to provide experimental support for this have failed. In particular, although there has been some success demonstrating that 'activated' ribonucleotides can polymerize to form RNA, it is far from obvious how such ribonucleotides could have formed from their constituent parts (ribose and nucleobases). Ribose is difficult to form selectively, and the addition of nucleobases to ribose is inefficient in the case of purines and does not occur at all in the case of the canonical pyrimidines. Here we show that activated pyrimidine ribonucleotides can be formed in a short sequence that bypasses free ribose and the nucleobases, and instead proceeds through arabinose amino-oxazoline and anhydronucleoside intermediates. The starting materials for the synthesis-cyanamide, cyanoacetylene, glycolaldehyde, glyceraldehyde and inorganic phosphate-are plausible prebiotic feedstock molecules, and the conditions of the synthesis are consistent with potential early-Earth geochemical models. Although inorganic phosphate is only incorporated into the nucleotides at a late stage of the sequence, its presence from the start is essential as it controls three reactions in the earlier stages by acting as a general acid/base catalyst, a nucleophilic catalyst, a pH buffer and a chemical buffer. For prebiotic reaction sequences, our results highlight the importance of working with mixed chemical systems in which reactants for a particular reaction step can also control other steps.

1,049 citations

Journal Article
01 Jan 2001-Nature
TL;DR: Advances in directed evolution and membrane biophysics make the synthesis of simple living cells, if not yet foreseeable reality, an imaginable goal.
Abstract: Advances in directed evolution and membrane biophysics make the synthesis of simple living cells, if not yet foreseeable reality, an imaginable goal. Overcoming the many scientific challenges along the way will deepen our understanding of the essence of cellular life and its origin on Earth.

910 citations