scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Semantic Image Synthesis With Spatially-Adaptive Normalization

TL;DR: S spatially-adaptive normalization is proposed, a simple but effective layer for synthesizing photorealistic images given an input semantic layout that allows users to easily control the style and content of image synthesis results as well as create multi-modal results.
Abstract: We propose spatially-adaptive normalization, a simple but effective layer for synthesizing photorealistic images given an input semantic layout. Previous methods directly feed the semantic layout as input to the network, forcing the network to memorize the information throughout all the layers. Instead, we propose using the input layout for modulating the activations in normalization layers through a spatially-adaptive, learned affine transformation. Experiments on several challenging datasets demonstrate the superiority of our method compared to existing approaches, regarding both visual fidelity and alignment with input layouts. Finally, our model allows users to easily control the style and content of image synthesis results as well as create multi-modal results. Code is available upon publication.

Content maybe subject to copyright    Report

Citations
More filters
Posted Content
TL;DR: Self-Attention Generative Adversarial Network (SAGAN) as mentioned in this paper uses attention-driven, long-range dependency modeling for image generation tasks and achieves state-of-the-art results.
Abstract: In this paper, we propose the Self-Attention Generative Adversarial Network (SAGAN) which allows attention-driven, long-range dependency modeling for image generation tasks. Traditional convolutional GANs generate high-resolution details as a function of only spatially local points in lower-resolution feature maps. In SAGAN, details can be generated using cues from all feature locations. Moreover, the discriminator can check that highly detailed features in distant portions of the image are consistent with each other. Furthermore, recent work has shown that generator conditioning affects GAN performance. Leveraging this insight, we apply spectral normalization to the GAN generator and find that this improves training dynamics. The proposed SAGAN achieves the state-of-the-art results, boosting the best published Inception score from 36.8 to 52.52 and reducing Frechet Inception distance from 27.62 to 18.65 on the challenging ImageNet dataset. Visualization of the attention layers shows that the generator leverages neighborhoods that correspond to object shapes rather than local regions of fixed shape.

2,106 citations

Proceedings ArticleDOI
31 Oct 2019
TL;DR: This work proposes an efficient algorithm to embed a given image into the latent space of StyleGAN, which enables semantic image editing operations that can be applied to existing photographs.
Abstract: We propose an efficient algorithm to embed a given image into the latent space of StyleGAN. This embedding enables semantic image editing operations that can be applied to existing photographs. Taking the StyleGAN trained on the FFHD dataset as an example, we show results for image morphing, style transfer, and expression transfer. Studying the results of the embedding algorithm provides valuable insights into the structure of the StyleGAN latent space. We propose a set of experiments to test what class of images can be embedded, how they are embedded, what latent space is suitable for embedding, and if the embedding is semantically meaningful.

851 citations


Additional excerpts

  • ...texture synthesis [18, 33, 28], video generation [31, 30], image-to-image translation [11, 36, 1, 24] and object detection [19]....

    [...]

Posted Content
TL;DR: It is demonstrated how combining the effectiveness of the inductive bias of CNNs with the expressivity of transformers enables them to model and thereby synthesize high-resolution images.
Abstract: Designed to learn long-range interactions on sequential data, transformers continue to show state-of-the-art results on a wide variety of tasks. In contrast to CNNs, they contain no inductive bias that prioritizes local interactions. This makes them expressive, but also computationally infeasible for long sequences, such as high-resolution images. We demonstrate how combining the effectiveness of the inductive bias of CNNs with the expressivity of transformers enables them to model and thereby synthesize high-resolution images. We show how to (i) use CNNs to learn a context-rich vocabulary of image constituents, and in turn (ii) utilize transformers to efficiently model their composition within high-resolution images. Our approach is readily applied to conditional synthesis tasks, where both non-spatial information, such as object classes, and spatial information, such as segmentations, can control the generated image. In particular, we present the first results on semantically-guided synthesis of megapixel images with transformers and obtain the state of the art among autoregressive models on class-conditional ImageNet. Code and pretrained models can be found at this https URL .

744 citations


Cites background from "Semantic Image Synthesis With Spati..."

  • ...This inductive bias towards local interactions thus leads to efficient computations, but the wide range of specialized layers which are introduced into CNNs to handle different synthesis tasks [46, 70, 59, 74, 73] suggest that this bias is often too restrictive....

    [...]

  • ...Dataset ours SPADE [46] Pix2PixHD (+aug) [65] CRN [9]...

    [...]

  • ...2 (where we compare to [46, 65, 31, 9]) and (ii) unconditional face synthesis in Tab....

    [...]

Posted Content
TL;DR: StarGAN v2, a single framework that tackles image-to-image translation models with limited diversity and multiple models for all domains, is proposed and shows significantly improved results over the baselines.
Abstract: A good image-to-image translation model should learn a mapping between different visual domains while satisfying the following properties: 1) diversity of generated images and 2) scalability over multiple domains. Existing methods address either of the issues, having limited diversity or multiple models for all domains. We propose StarGAN v2, a single framework that tackles both and shows significantly improved results over the baselines. Experiments on CelebA-HQ and a new animal faces dataset (AFHQ) validate our superiority in terms of visual quality, diversity, and scalability. To better assess image-to-image translation models, we release AFHQ, high-quality animal faces with large inter- and intra-domain differences. The code, pretrained models, and dataset can be found at this https URL.

697 citations


Cites background from "Semantic Image Synthesis With Spati..."

  • ...Other approaches produce various outputs with the guidance of reference images [4, 5, 26, 32]....

    [...]

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations


Additional excerpts

  • ...We use the ADAM [21] and set β1 = 0, β2 = 0.999....

    [...]

  • ...We use the ADAM [21] and set β1 = 0, β2 = 0....

    [...]

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Journal ArticleDOI
08 Dec 2014
TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.
Abstract: We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to ½ everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.

38,211 citations


"Semantic Image Synthesis With Spati..." refers background in this paper

  • ...ontrollable, diverse outputs as shown in Figure1. 2. Related Work Deep generative models can learn to synthesize randomly sampled images. Recent methods include generative adversarial networks (GANs) [12] and variational autoencoder (VAE) [22]. Our work is built on GANs but aims for the conditional image synthesis task. The GANs consist of a generator and a discriminator where the goal of the generato...

    [...]

Proceedings Article
Sergey Ioffe1, Christian Szegedy1
06 Jul 2015
TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Abstract: Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization, and in some cases eliminates the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.82% top-5 test error, exceeding the accuracy of human raters.

30,843 citations


"Semantic Image Synthesis With Spati..." refers background or methods in this paper

  • ...Unconditional normalization layers have been an im­ portant component in modern deep networks and can be found in various classifier designs, including the Focal Re­ sponse Normalization (FRN) in the AlexNet [29] and Batch Normalization (BN) in the Inception-v2 network [21], Figure 2: In SPADE, the mask is first projected onto an em­ bedding space, and then convolved to produce the modula­ tion parameters 7 and (3....

    [...]

  • ...In contrast to BatchNorm [19], they depend on the input segmentation mask and vary with respect to the location (y, x)....

    [...]

  • ...Similar to Batch Normaliza­ tion [21], the activation is normalized in the channel-wise manner, and then modulated with learned scale and bias....

    [...]

  • ...y (m) in (1) are the learned modulation parameters of the normalization layer In contrast to BatchNorm [21], they depend on the input segmentation mask and vary with respect to the location (y, x)....

    [...]