scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Semiconductor−Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO2 Films?

23 Oct 2001-Journal of Physical Chemistry B (American Chemical Society)-Vol. 105, Iss: 46, pp 11439-11446
TL;DR: In this paper, a tetraoctylammonium bromide (TOAB)-capped metal nanoparticles on TiO2 films improved the photocurrent generation and induced a shift in the apparent flat band potential.
Abstract: Noble metal particles of Au, Pt, and Ir were deposited on nanostructured TiO2 film using an electrophoretic approach. The nanocomposite films were characterized by UV-absorption and atomic force microscopy (AFM). The deposition of tetraoctylammonium bromide (TOAB)-capped metal nanoparticles on TiO2 films improved the photocurrent generation and induced a shift in the apparent flat band potential. The TiO2 films modified with TOAB-capped metal nanoparticles were less prone to the electron scavenging by the oxygen in solution. Improved photoelectrochemical performance of semiconductor−metal composite film is attributed to the shift in quasi-Fermi level of the composite to more negative potentials. Continuous irradiation of the composite films over a long period causes photocurrent to decrease as the semiconductor−metal interface undergoes chemical changes. The role of semiconductor−metal composite films in improving the rate of photocatalytic degradation of an azo dye is also discussed.
Citations
More filters
Journal ArticleDOI
TL;DR: Plasmon-enhanced water splitting on composite photocatalysts containing semiconductor and plasmonic-metal building blocks is focused on, and recently reported plasMon-mediated photocatallytic reactions on plAsmonic nanostructures of noble metals are discussed.
Abstract: Recent years have seen a renewed interest in the harvesting and conversion of solar energy. Among various technologies, the direct conversion of solar to chemical energy using photocatalysts has received significant attention. Although heterogeneous photocatalysts are almost exclusively semiconductors, it has been demonstrated recently that plasmonic nanostructures of noble metals (mainly silver and gold) also show significant promise. Here we review recent progress in using plasmonic metallic nanostructures in the field of photocatalysis. We focus on plasmon-enhanced water splitting on composite photocatalysts containing semiconductor and plasmonic-metal building blocks, and recently reported plasmon-mediated photocatalytic reactions on plasmonic nanostructures of noble metals. We also discuss the areas where major advancements are needed to move the field of plasmon-mediated photocatalysis forward.

4,074 citations

Journal ArticleDOI
TL;DR: In this article, the up-to-date development of the above-mentioned technologies applied to TiO 2 photocatalytic hydrogen production is reviewed, based on the studies reported in the literature, metal ion-implantation and dye sensitization are very effective methods to extend the activating spectrum to the visible range.
Abstract: Nano-sized TiO 2 photocatalytic water-splitting technology has great potential for low-cost, environmentally friendly solar-hydrogen production to support the future hydrogen economy. Presently, the solar-to-hydrogen energy conversion efficiency is too low for the technology to be economically sound. The main barriers are the rapid recombination of photo-generated electron/hole pairs as well as backward reaction and the poor activation of TiO 2 by visible light. In response to these deficiencies, many investigators have been conducting research with an emphasis on effective remediation methods. Some investigators studied the effects of addition of sacrificial reagents and carbonate salts to prohibit rapid recombination of electron/hole pairs and backward reactions. Other research focused on the enhancement of photocatalysis by modification of TiO 2 by means of metal loading, metal ion doping, dye sensitization, composite semiconductor, anion doping and metal ion-implantation. This paper aims to review the up-to-date development of the above-mentioned technologies applied to TiO 2 photocatalytic hydrogen production. Based on the studies reported in the literature, metal ion-implantation and dye sensitization are very effective methods to extend the activating spectrum to the visible range. Therefore, they play an important role in the development of efficient photocatalytic hydrogen production.

3,714 citations


Cites background from "Semiconductor−Metal Composite Nanos..."

  • ...Noble metals, including Pt, Au, Pd, Rh, Ni, Cu and Ag, have been reported to be very effective for enhancement of TiO2 photocatalysis [28,44–60]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors.
Abstract: Rising atmospheric levels of carbon dioxide and the depletion of fossil fuel reserves raise serious concerns about the ensuing effects on the global climate and future energy supply. Utilizing the abundant solar energy to convert CO2 into fuels such as methane or methanol could address both problems simultaneously as well as provide a convenient means of energy storage. In this Review, current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors are presented. Research in this field is focused primarily on the development of novel nanostructured photocatalytic materials and on the investigation of the mechanism of the process, from light absorption through charge separation and transport to CO2 reduction pathways. The measures used to quantify the efficiency of the process are also discussed in detail.

2,273 citations

Journal ArticleDOI
TL;DR: In this article, three major ways to utilize nanostructures for the design of solar energy conversion devices are discussed: (i) mimicking photosynthesis with donor−acceptor molecular assemblies or clusters, (ii) semiconductor assisted photocatalysis to produce fuels such as hydrogen, and (iii) nanostructure semiconductor based solar cells.
Abstract: The increasing energy demand in the near future will force us to seek environmentally clean alternative energy resources. The emergence of nanomaterials as the new building blocks to construct light energy harvesting assemblies has opened up new ways to utilize renewable energy sources. This article discusses three major ways to utilize nanostructures for the design of solar energy conversion devices: (i) Mimicking photosynthesis with donor−acceptor molecular assemblies or clusters, (ii) semiconductor assisted photocatalysis to produce fuels such as hydrogen, and (iii) nanostructure semiconductor based solar cells. This account further highlights some of the recent developments in these areas and points out the factors that limit the efficiency optimization. Strategies to employ ordered assemblies of semiconductor and metal nanoparticles, inorganic-organic hybrid assemblies, and carbon nanostructures in the energy conversion schemes are also discussed. Directing the future research efforts toward utiliza...

2,119 citations

Journal ArticleDOI
TL;DR: The size-dependent shift in the apparent Fermi level of the TiO(2)-Au composite shows the ability of Au nanoparticles to influence the energetics by improving the photoinduced charge separation.
Abstract: Photoexcited semiconductor nanoparticles undergo charge equilibration when they are in contact with metal nanoparticles. Such a charge distribution has direct influence in dictating the energetics of the composite by shifting the Fermi level to more negative potentials. The transfer of electrons to Au nanoparticles has now been probed by exciting TiO2 nanoparticles under steady-state and laser pulse excitation. Equilibration with the C60/C60- redox couple provides a means to determine the apparent Fermi level of the TiO2−Au composite system. The size-dependent shift in the apparent Fermi level of the TiO2−Au composite (20 mV for 8-nm diameter and 40 mV for 5-nm and 60 mV for 3-nm gold nanoparticles) shows the ability of Au nanoparticles to influence the energetics by improving the photoinduced charge separation. Isolation of individual charge-transfer steps from UV-excited TiO2 → Au → C60 has provided mechanistic and kinetic information on the role of metal in semiconductor-assisted photocatalysis and siz...

1,896 citations

References
More filters
Journal ArticleDOI
TL;DR: The slow pace of hazardous waste remediation at military installations around the world is causing a serious delay in conversion of many of these facilities to civilian uses as discussed by the authors, which is a serious problem.
Abstract: The civilian, commercial, and defense sectors of most advanced industrialized nations are faced with a tremendous set of environmental problems related to the remediation of hazardous wastes, contaminated groundwaters, and the control of toxic air contaminants. For example, the slow pace of hazardous waste remediation at military installations around the world is causing a serious delay in conversion of many of these facilities to civilian uses. Over the last 10 years problems related to hazardous waste remediation have emerged as a high national and international priority.

17,188 citations

Journal ArticleDOI
TL;DR: Using two-phase reduction of AuCl4 by sodium borohydride in the presence of an alkanethiol, solutions of 1-3 nm gold particles bearing a surface coating of thiol have been prepared and characterised; this novel material can be handled as a simple chemical compound as mentioned in this paper.
Abstract: Using two-phase (water–toluene) reduction of AuCl4– by sodium borohydride in the presence of an alkanethiol, solutions of 1–3 nm gold particles bearing a surface coating of thiol have been prepared and characterised; this novel material can be handled as a simple chemical compound.

6,251 citations

Journal ArticleDOI
TL;DR: In this article, the presence of metal ion dopants in the TiO_2 crystalline matrix significantly influences photoreactivity, charge carrier recombination rates, and interfacial electron-transfer rates.
Abstract: A systematic study of metal ion doping in quantum (Q)-sized (2-4 nm) TiO_2 colloids is performed by measuring their photoreactivities and the transient charge carrier recombination dynamics. The presence of metal ion dopants in the TiO_2 crystalline matrix significantly influences photoreactivity, charge carrier recombination rates, and interfacial electron-transfer rates. The photoreactivities of 21 metal ion-doped colloids are quantified in terms of both the conduction band electron reduction of an electron acceptor (CCl_4 dechlorination) and the valence band hole oxidation of an electron donor (CHCl_3 degradation). Doping with Fe^(3+), Mo^(5+), Ru^(3+), Os^(3+), Re^(5+), V^(4+), and Rh^(3+) at 0.1-0.5 at.% significantly increases the photoreactivity for both oxidation and reduction while Co^(3+) and Al^(3+) doping decreases the photoreactivity. The transient absorption signals upon laser flash photolysis (λ_(ex) = 355 nm) at λ = 600 nm are extended up to 50 ms for Fe^(3+)-, V^(4+)-, Mo^(5+)-, and Ru^(3+)-doped TiO_2 while the undoped Q-sized TiO_2 shows a complete "blue electron" signal decay within 200 μs. Co^(3+)- and Al^(3+)-doped TiO_2 are characterized by rapid signal decays with a complete loss of absorption signals within 5 μs. The quantum yields obtained during CW photolyses are quantitatively correlated with the measured transient absorption signals of the charge carriers. Photoreactivities are shown to increase with the relative concentration of trapped charge carriers. The photoreactivity of doped TiO_2 appears to be a complex function of the dopant concentration, the energy level of dopants within the TiO_2 lattice, their d electronic configuration, the distribution of dopants, the electron donor concentration, and the light intensity.

3,508 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the photodriven conversion of liquid water to gaseous hydrogen and oxygen, a process similar to that of biological photosynthesis, using sunlight to drive a thermodynamically uphill reaction of an abundant material to produce fuel.
Abstract: The maintenance of life on earth, our food, oxygen, and fossil fuels depend upon the conversion of solar energy into chemical energy by biological photosynthesis carried out by green plants and photosynthetic bacteria. In this process sunlight and available abundant raw materials (water, carbon dioxide) are converted to oxygen and the reduced organic species that serve as food and fuel. A long-standing challenge has been the development of a practical artificial photosynthetic system that can roughly mimic the biological one, not by duplicating the self-organization and reproduction of the biological system nor the aesthetic beauty of trees and plants, but rather by being able to use sunlight to drive a thermodynamically uphill reaction of an abundant materials to produce a fuel. In this Account we focus on “water splitting”, the photodriven conversion of liquid water to gaseous hydrogen and oxygen:

2,377 citations