scispace - formally typeset
Journal ArticleDOI

Senescence Mutants of Saccharomyces cerevisiae With a Defect in Telomere Replication Identify Three Additional EST Genes

Reads0
Chats0
TLDR
Epistasis analysis indicated that the four EST genes function in the same pathway for telomere replication as defined by the TLC1 gene, suggesting that the EST genes encode either components of telomersase or factors that positively regulate telomerase activity.
Abstract
The primary determinant for telomere replication is the enzyme telomerase, responsible for elongating the G-rich strand of the telomere. The only component of this enzyme that has been identified in Saccharomyces cerevisiae is the TLC1 gene, encoding the telomerase RNA subunit. However, a yeast strain defective for the EST1 gene exhibits the same phenotypes (progressively shorter telomeres and a senescence phenotype) as a strain deleted for TLC1, suggesting that EST1 encodes either a component of telomerase or some other factor essential for telomerase function. We designed a multitiered screen that led to the isolation of 22 mutants that display the same phenotypes as est1 and tlc1 mutant strains. These mutations mapped to four complementation groups: the previously identified EST1 gene and three additional genes, called EST2, EST3 and EST4. Cloning of the EST2 gene demonstrated that it encodes a large, extremely basic novel protein with no motifs that provide clues as to function. Epistasis analysis indicated that the four EST genes function in the same pathway for telomere replication as defined by the TLC1 gene, suggesting that the EST genes encode either components of telomerase or factors that positively regulate telomerase activity.

read more

Citations
More filters
Journal ArticleDOI

Extension of life-span by introduction of telomerase into normal human cells

TL;DR: In this article, two telomerase-negative normal human cell types, retinal pigment epithelial cells and foreskin fibroblasts, were transfected with vectors encoding the human telomere catalytic subunit.
Journal ArticleDOI

Telomerase catalytic subunit homologs from fission yeast and human

TL;DR: In this paper, the homologous genes from the fission yeast Schizosaccharomyces pombe and human are identified and the proposed telomerase catalytic subunits represent a deep branch in the evolution of reverse transcriptases.
Journal ArticleDOI

hEST2, the Putative Human Telomerase Catalytic Subunit Gene, Is Up-Regulated in Tumor Cells and during Immortalization

TL;DR: The cloning of a human gene, hEST2, that shares significant sequence similarity with the telomerase catalytic subunit genes of lower eukaryotes is reported, suggesting that the induction of hEST 2 mRNA expression is required for the telomersase activation that occurs during cellular immortalization and tumor progression.
Journal ArticleDOI

Reverse Transcriptase Motifs in the Catalytic Subunit of Telomerase

TL;DR: The reverse transcriptase protein fold, previously known to be involved in retroviral replication and retrotransposition, is essential for normal chromosome telomere replication in diverse eukaryotes.
Journal ArticleDOI

Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span

TL;DR: Results show that retroviral-mediated expression of hTERT resulted in functional telomerase activity in normal aging human cells, indicating that telomere length is one factor that can determine the replicative life span of human cells.
References
More filters
Journal ArticleDOI

Specific association of human telomerase activity with immortal cells and cancer

TL;DR: A highly sensitive assay for measuring telomerase activity was developed in this paper, which showed that telomerases appear to be stringently repressed in normal human somatic tissues but reactivated in cancer, where immortal cells are likely required to maintain tumor growth.
Journal ArticleDOI

Telomeres shorten during ageing of human fibroblasts.

TL;DR: The amount and length of telomeric DNA in human fibroblasts does in fact decrease as a function of serial passage during ageing in vitro and possibly in vivo.
Journal ArticleDOI

The RNA component of human telomerase

TL;DR: Human cell lines that expressed hTR mutated in the template region generated the predicted mutant telomerase activity, and cells transfected with an antisense hTR lost telomeric DNA and began to die after 23 to 26 doublings.
Journal ArticleDOI

Telomere length predicts replicative capacity of human fibroblasts.

TL;DR: Telomere length is a biomarker of somatic cell aging in humans and is consistent with a causal role for telomere loss in this process, and fibroblasts from Hutchinson-Gilford progeria donors had short telomeres, consistent with their reduced division potential in vitro.
Journal ArticleDOI

A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance.

TL;DR: Mutations at the URA3 locus of Saccharomyces cerevisiae can be obtained by a positive selection, based on the loss of orotidine-5′-phosphate decarboxylase activity, and seems applicable to a variety of eucaryotic and procaryotic cells.
Related Papers (5)