scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line

TL;DR: The absolute protein and mRNA concentration measurements for >1000 human genes described here represent one of the largest datasets currently available, and reveal both general trends and specific examples of post‐transcriptional regulation.
Abstract: Transcription, mRNA decay, translation and protein degradation are essential processes during eukaryotic gene expression, but their relative global contributions to steady-state protein concentrations in multi-cellular eukaryotes are largely unknown. Using measurements of absolute protein and mRNA abundances in cellular lysate from the human Daoy medulloblastoma cell line, we quantitatively evaluate the impact of mRNA concentration and sequence features implicated in translation and protein degradation on protein expression. Sequence features related to translation and protein degradation have an impact similar to that of mRNA abundance, and their combined contribution explains two-thirds of protein abundance variation. mRNA sequence lengths, amino-acid properties, upstream open reading frames and secondary structures in the 5′ untranslated region (UTR) were the strongest individual correlates of protein concentrations. In a combined model, characteristics of the coding region and the 3′UTR explained a larger proportion of protein abundance variation than characteristics of the 5′UTR. The absolute protein and mRNA concentration measurements for >1000 human genes described here represent one of the largest datasets currently available, and reveal both general trends and specific examples of post-transcriptional regulation.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
19 May 2011-Nature
TL;DR: Using a quantitative model, the first genome-scale prediction of synthesis rates of mRNAs and proteins is obtained and it is found that the cellular abundance of proteins is predominantly controlled at the level of translation.
Abstract: Gene expression is a multistep process that involves the transcription, translation and turnover of messenger RNAs and proteins. Although it is one of the most fundamental processes of life, the entire cascade has never been quantified on a genome-wide scale. Here we simultaneously measured absolute mRNA and protein abundance and turnover by parallel metabolic pulse labelling for more than 5,000 genes in mammalian cells. Whereas mRNA and protein levels correlated better than previously thought, corresponding half-lives showed no correlation. Using a quantitative model we have obtained the first genome-scale prediction of synthesis rates of mRNAs and proteins. We find that the cellular abundance of proteins is predominantly controlled at the level of translation. Genes with similar combinations of mRNA and protein stability shared functional properties, indicating that half-lives evolved under energetic and dynamic constraints. Quantitative information about all stages of gene expression provides a rich resource and helps to provide a greater understanding of the underlying design principles.

5,635 citations

Journal ArticleDOI
TL;DR: Current understanding of the major factors regulating protein expression is summarized to demonstrate a substantial role for regulatory processes occurring after mRNA is made in controlling steady-state protein abundances.
Abstract: Recent advances in next-generation DNA sequencing and proteomics provide an unprecedented ability to survey mRNA and protein abundances. Such proteome-wide surveys are illuminating the extent to which different aspects of gene expression help to regulate cellular protein abundances. Current data demonstrate a substantial role for regulatory processes occurring after mRNA is made - that is, post-transcriptional, translational and protein degradation regulation - in controlling steady-state protein abundances. Intriguing observations are also emerging in relation to cells following perturbation, single-cell studies and the apparent evolutionary conservation of protein and mRNA abundances. Here, we summarize current understanding of the major factors regulating protein expression.

3,308 citations

Journal ArticleDOI
TL;DR: Ongoing work to quantify the dynamics of initiation and elongation is as important for understanding natural synonymous variation as it is for designing transgenes in applied contexts.
Abstract: Despite their name, synonymous mutations have significant consequences for cellular processes in all taxa. As a result, an understanding of codon bias is central to fields as diverse as molecular evolution and biotechnology. Although recent advances in sequencing and synthetic biology have helped to resolve longstanding questions about codon bias, they have also uncovered striking patterns that suggest new hypotheses about protein synthesis. Ongoing work to quantify the dynamics of initiation and elongation is as important for understanding natural synonymous variation as it is for designing transgenes in applied contexts.

1,318 citations


Cites background from "Sequence signatures and mRNA concen..."

  • ...Measurements of endogenous expression Recent developments in mass spectrometry and fluorescence microscopy allow large-scale measurements of endogenous protein level...

    [...]

Journal ArticleDOI
TL;DR: Current understanding of the extent to which synonymous mutations influence disease, the various molecular mechanisms that underlie these effects and the implications for future research and biomedical applications are reviewed.
Abstract: Synonymous mutations — sometimes called 'silent' mutations — are now widely acknowledged to be able to cause changes in protein expression, conformation and function. The recent increase in knowledge about the association of genetic variants with disease, particularly through genome-wide association studies, has revealed a substantial contribution of synonymous SNPs to human disease risk and other complex traits. Here we review current understanding of the extent to which synonymous mutations influence disease, the various molecular mechanisms that underlie these effects and the implications for future research and biomedical applications.

853 citations

Journal ArticleDOI
TL;DR: This work provides a quantitative description of the proteome of a commonly used human cell line in two functional states, interphase and mitosis, and shows that these human cultured cells express at least ∼10 000 proteins and that the quantified proteins span a concentration range of seven orders of magnitude up to 20 000 000 copies per cell.
Abstract: The generation of mathematical models of biological processes, the simulation of these processes under different conditions, and the comparison and integration of multiple data sets are explicit goals of systems biology that require the knowledge of the absolute quantity of the system's components. To date, systematic estimates of cellular protein concentrations have been exceptionally scarce. Here, we provide a quantitative description of the proteome of a commonly used human cell line in two functional states, interphase and mitosis. We show that these human cultured cells express at least ∼10 000 proteins and that the quantified proteins span a concentration range of seven orders of magnitude up to 20 000 000 copies per cell. We discuss how protein abundance is linked to function and evolution.

773 citations


Cites background or methods from "Sequence signatures and mRNA concen..."

  • ...Protein copy numbers of about 6000 mouse proteins (Schwanhausser et al, 2011) and about 1000 human proteins have previously been reported (Vogel et al, 2010)....

    [...]

  • ...The quantitative proteome of a human cell line...

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this article, a new estimate minimum information theoretical criterion estimate (MAICE) is introduced for the purpose of statistical identification, which is free from the ambiguities inherent in the application of conventional hypothesis testing procedure.
Abstract: The history of the development of statistical hypothesis testing in time series analysis is reviewed briefly and it is pointed out that the hypothesis testing procedure is not adequately defined as the procedure for statistical model identification. The classical maximum likelihood estimation procedure is reviewed and a new estimate minimum information theoretical criterion (AIC) estimate (MAICE) which is designed for the purpose of statistical identification is introduced. When there are several competing models the MAICE is defined by the model and the maximum likelihood estimates of the parameters which give the minimum of AIC defined by AIC = (-2)log-(maximum likelihood) + 2(number of independently adjusted parameters within the model). MAICE provides a versatile procedure for statistical model identification which is free from the ambiguities inherent in the application of conventional hypothesis testing procedure. The practical utility of MAICE in time series analysis is demonstrated with some numerical examples.

47,133 citations


"Sequence signatures and mRNA concen..." refers methods in this paper

  • ...26 (A) AIC based subset selection method (linear regression) The Akaike's information criterion (AIC) is a measure of the goodness of fit of the estimated linear model (Akaike, 1974)....

    [...]

Journal ArticleDOI
TL;DR: This paper provides an introduction to the WEKA workbench, reviews the history of the project, and, in light of the recent 3.6 stable release, briefly discusses what has been added since the last stable version (Weka 3.4) released in 2003.
Abstract: More than twelve years have elapsed since the first public release of WEKA. In that time, the software has been rewritten entirely from scratch, evolved substantially and now accompanies a text on data mining [35]. These days, WEKA enjoys widespread acceptance in both academia and business, has an active community, and has been downloaded more than 1.4 million times since being placed on Source-Forge in April 2000. This paper provides an introduction to the WEKA workbench, reviews the history of the project, and, in light of the recent 3.6 stable release, briefly discusses what has been added since the last stable version (Weka 3.4) released in 2003.

19,603 citations

Book
28 Jul 2013
TL;DR: In this paper, the authors describe the important ideas in these areas in a common conceptual framework, and the emphasis is on concepts rather than mathematics, with a liberal use of color graphics.
Abstract: During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression and path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for ``wide'' data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

19,261 citations

Journal ArticleDOI
TL;DR: The Elements of Statistical Learning: Data Mining, Inference, and Prediction as discussed by the authors is a popular book for data mining and machine learning, focusing on data mining, inference, and prediction.
Abstract: (2004). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Journal of the American Statistical Association: Vol. 99, No. 466, pp. 567-567.

10,549 citations

Journal ArticleDOI
TL;DR: It is found that the performance of the current version of the default expression measure provided by Affymetrix Microarray Suite can be significantly improved by the use of probe level summaries derived from empirically motivated statistical models.
Abstract: High density oligonucleotide array technology is widely used in many areas of biomedical research for quantitative and highly parallel measurements of gene expression. Affymetrix GeneChip arrays are the most popular. In this technology each gene is typically represented by a set of 11–20 pairs of probes. In order to obtain expression measures it is necessary to summarize the probe level data. Using two extensive spike-in studies and a dilution study, we developed a set of tools for assessing the effectiveness of expression measures. We found that the performance of the current version of the default expression measure provided by Affymetrix Microarray Suite can be significantly improved by the use of probe level summaries derived from empirically motivated statistical models. In particular, improvements in the ability to detect differentially expressed genes are demonstrated.

5,119 citations


"Sequence signatures and mRNA concen..." refers methods in this paper

  • ...Estimates of absolute mRNA concentrations Gene expression values were generated using NimbleScan expression Robust Multi-array Analysis (Irizarry et al, 2003)....

    [...]

  • ...We measured absolute mRNA and matching protein concentrations for 41000 genes, describing the average concentration of each mRNA or protein across a population of Daoy medulloblastoma cells....

    [...]