scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sequencing technologies-the next generation

01 Jan 2010-Nature Reviews Genetics (Nature Publishing Group)-Vol. 11, Iss: 1, pp 31-46
TL;DR: A technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments is presented.
Abstract: Demand has never been greater for revolutionary technologies that deliver fast, inexpensive and accurate genome information. This challenge has catalysed the development of next-generation sequencing (NGS) technologies. The inexpensive production of large volumes of sequence data is the primary advantage over conventional methods. Here, I present a technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments. I also outline the broad range of applications for NGS technologies, in addition to providing guidelines for platform selection to address biological questions of interest.

Summary (1 min read)

Jump to:  and [Summary]

Summary

  • DNA sequencing is one of the most important platforms for study in biological systems today.
  • The high-throughput-next generation sequencing technologies delivers fast, inexpensive, and accurate genome information.
  • Next generation sequencing can produce over 100 times more data than methods based on Sanger Sequencing.
  • The next generation sequencing technologies offered from Illumina / Solexa, ABI/SOLiD, 454/Roche, and Helicos has provided unprecedented opportunity for high-throughput functional genomic research.
  • Next generation sequence technologies offer novel and rapid ways for genome-wide characterization and profiling of mRNA's, transcription factor regions, and DNA patterns.

Did you find this useful? Give us your feedback

Content maybe subject to copyright    Report

TEMPLATE DESIGN © 2008
www.PosterPresentations.com
ABSTRACT
Conclusion and Future Work
Next Generation Sequencing
CONTACT INFO
Data Analysis Comparisons
Downstream Analysis
REFERENCES
DNA sequencing is one of the most important platforms for
study in biological systems today. The high-throughput-next
generation sequencing technologies delivers fast,
inexpensive, and accurate genome information. Next
generation sequencing can produce over 100 times more data
than methods based on Sanger Sequencing. The next
generation sequencing technologies offered from Illumina /
Solexa, ABI/SOLiD, 454/Roche, and Helicos has provided
unprecedented opportunity for high–throughput functional
genomic research. Next generation sequence technologies
offer novel and rapid ways for genome-wide characterization
and profiling of mRNAs, transcription factor regions, and DNA
patterns.
Fig. 7) This is a plot of the frequency of each percentage covered for all nodes.
BLAST is in blue, MUMmer is in green.
Sequencing Technologies – the Next Generation,
Micahel L. Metzkerh
Next Generation Sequencing Pipeline Development and Data Analysis
Fig. 9) This is a plot of the coverage of each Node. BLAST points are blue,
MUMmer points are red.
Fig. 6) This is a plot of the frequency of each percentage covered for all contigs.
BLAST is in blue, MUMmer is in green.
454/Roche – 454 Life Sciences is a Biotechnology company
that is a part of Roche and based in Branford, Connecticut.
The center develops ultra-fast high-throughput DNA
sequencing methods and tools.
Illumina/Solexa– Illumina is a company that develops and
manufactures integrated systems for the analysis of gene
variation. Solexa was founded to develop genome
sequencing technology.
ABI/SOLiD - (Sequencing by Oligonucleotide Ligation and
Detection) is a next-generation DNA sequencing technology
developed by Life Technologies and has been commercially
available since 2006. This next generation technology
generates hundreds of millions to billions of small sequence
reads at one time.
Helicos - Helicos's technology images the extension of
individual DNA molecules using a defined primer and
individual fluorescently labeled nucleotides, which contain a
"virtual terminator" preventing incorporation of multiple
nucleotides per cycle.
Julian Pierre
1
, Jordan Taylor
2
, Amit Upadhyay
3
, Bhanu Rekepalli
3
Fig. 8) This is a plot of the coverage of each Contig. BLAST points are blue,
MUMmer points are red.
Using the coverage of
each individual contig
ID, the results for both
BLAST and MUMmer
were plotted. While
BLAST hit more contigs,
there are more contigs
with a higher coverage
that were hit by
MUMmer.
Using the data gathered
from both BLAST and
MUMmer, the frequency
of the amount covered
for each contig was
plotted. From Fig 6), it
can be inferred that
MUMmer hit more
accurately for contigs.
Fig 4) from main.g2.bx.psu.edu
Once the results were found using both the BLAST and
MUMmer search tools, we created a program to see which
sequencing tool had the most hits per contig. The total
number of contigs in the database file is 160,749 and the
total number of nodes in the query file is 552,305. BLAST
returned a total of 123,070 hits and MUMmer returned a
total of 121,829 hits. From the results, MUMmer hit more
accurately than BLAST while BLAST hit more contigs than
MUMmer.
In Next-Generation Sequencing, data analysis is one of the
most expensive processes. While the cost of genome
sequencing goes down, the cost of analyzing data is still
expensive. In the future, the “$1,000 genome will come with
a $20,000 analysis price tag.”
The same process was
done with the Nodes.
From Fig 7), it can be
inferred that BLAST hit
more accurately with
nodes. However, there
are more BLAST results
with lower coverage.
The future of next generation sequencing can be broken
down into a variety of categories such as personalized
medicine, bio fuels, climate change, and other life science
fields.
Personalized Medicine is a medical model that proposes
the customization of medical decision to tailor an
individual
Bio Fuels present a source of alternative energy.
Microalgal biofuels use algae to synthesize the fuel. In
order to optimize the process, an understanding of the
gene-function relationship of algae would prove helpful.
Climate change is the active study of past and future
theoretical models which uses the past climate data to
make future projections.
In conclusion, we hope to contribute the knowledge we
have gained to contribute to fields such as these.
The same process was
done with the Nodes.
While BLAST hit more
Nodes, there are more
Nodes that hit with a
lower coverage using
BLAST.
1 Texas Southern University, 2 Austin Peay State University, 3 University of Tennessee
Next Gen Sequencing uses a wide array of tools to obtain results based
on the genome sequence. The most widely used Tools are BLAST,
HMMER, and MUMmer.
BLAST (Basic Local Alignment Search Tool) is a multi-sequence
alignment tool developed by NIH (National Institute of Health). It is
used find similar regions in different sequences and then compare
their similarities.
MUMmer (Maximum Unique Matches) is a rapid alignment system
used for rapidly aligning entire genomes. It can also align incomplete
genomes and can easily handle 1000’s of contigs from a shotgun
sequencing project.
HMMER (Hidden Markov Modeler) is used for searching sequence
databases for homologs of protein sequences, and for making protein
sequence alignments. It implements methods using probabilistic
models called profile hidden Markov models (HMMs)
Genome Assembly
Sequence Analysis refers to
the process of subjecting a
DNA, RNA or peptide
sequence to a wide range of
analytical methods to:
Compare sequences to find
similarities and infer if they
are Homologous
To identify the features of
the sequence such as gene
structure, distribution,
introns and exons, and
regulation of gene
expression
Identify Sequence
differences and variations
such as mutations
Fig. 1) This is figure shows three different Next Generation Sequencing methods. [2]
Fig. 2) Taken from A Hitchhiker’s Guide to Next-Generation Sequencing, by Gabe Rudy
Fig. 3) Taken from bio.davidson.edu/courses. Shows alignment results for yeast.
Fig 5) from jcvi.org shows the mapping of chr6 of a Human Genome
Julian Pierre – julz_pierre@yahoo.com
Jordan Taylor – jtaylor74@my.apsu.edu
Amit Upadhyay – aupadhy1@utk.edu
Bhanu Rekepalli – brekapal@utk.edu
http://www.roche.com/research_and_development/r_d_overview/
r_d_sites.htm?id=18
http://www.pnas.org/content/99/6/3712/F1.expansion.html
http://www.yerkes.emory.edu/nhp_genomics_core/Services/
Sequencing.html
http://www.illumina.com/technology/solexa_technology.ilmn
http://blast.ncbi.nlm.nih.gov/Blast.cgi
https://main.g2.bx.psu.edu/u/dan/p/fastq
http://ori.dhhs.gov/education/products/n_illinois_u/datamanagement/
datopic.htmll
http://www.jcvi.org/medicago/include/images/chr6.BamHI.maps.jpg
Gabe Rudy, (2010) A Hitchhikers Guide to Next-Generation
Sequencing, :1-9, Golden Helix
[1] John D. McPherson, (2009) Next-Generation Gap, 6:1-4, Nature
Methods Supplement
[2]Michael L. Metzker, (2010) Sequencing Technologies, - the next
generation, 11:1-5, Nature Reviews
Md. Fakruddin,Khanjada Shahnewaj Bin mannan, (2012) Next
Generation sequencing technologies – Principles and prospects,
6:1-9, Research and Reviews in Biosciences
Misra N., Panda P. K., Parida B. K., Mishra B. K., (2012)
Phylogenomic Study of Lipid Genes Involved in Mocroalgal Biofuel
Production – Candidate Gene Mining and Metabolic Pathway
Analyses, Evolutionary Bioinformatics 8:545-564, doi: 10.4137/
EBO.S10159
Galaxy is an open, web-based
platform for data intensive
biomedical research. It can be
used on its own free public
server where you can perform,
reproduce, and share complete
analyses.
An example of how Galaxy
reflects its data is shown in Fig 5.
Two FASTA files related to the same nucleotide sequence
were input into both BLAST and MUMmer and the results
were parsed into tables. Then, the coverage of all hit contigs
and nodes from both programs was found.
Citations
More filters
Journal ArticleDOI
TL;DR: Although CRD was initially diagnosed in all patients, the molecular findings led to a reappraisal of the diagnosis in patients carrying mutations in EYS, CABP4, and KCNV2, which revealed a variety of retinal appearances, ranging from nearly normal to extensive retinal remodeling, retinal thinning, and debris accumulation.
Abstract: PURPOSE. To determine the genetic defect and to describe the clinical characteristics in a cohort of mainly nonconsanguineous cone-rod dystrophy (CRD) patients. METHODS. One hundred thirty-nine patients with diagnosed CRD were recruited. Ninety of them were screened for known mutations in ABCA4, and those carrying one or two mutations were excluded from further research. Genome-wide homozygosity mapping was performed in the remaining 108. Known genes associated with autosomal recessive retinal dystrophies located within a homozygous region were screened for mutations. Patients in whom a mutation was detected underwent further ophthalmic examination. RESULTS. Homozygous sequence variants were identified in eight CRD families, six of which were nonconsanguineous. The variants were detected in the following six genes: ABCA4, CABP4, CERKL, EYS, KCNV2, and PROM1. Patients carrying mutations in ABCA4, CERKL, and PROM1 had typical CRD symptoms, but a variety of retinal appearances on funduscopy, optical coherence tomography, and autofluorescence imaging. CONCLUSIONS. Homozygosity mapping led to the identification of new mutations in consanguineous and nonconsanguineous patients with retinal dystrophy. Detailed clinical characterization revealed a variety of retinal appearances, ranging from nearly normal to extensive retinal remodeling, retinal thinning, and debris accumulation. Although CRD was initially diagnosed in all patients, the molecular findings led to a reappraisal of the diagnosis in patients carrying mutations in EYS, CABP4, and KCNV2.

106 citations


Cites background from "Sequencing technologies-the next ge..."

  • ...Moreover, such data may be valuable now that nextgeneration sequencing is emerging, which enables the screening of all genes within a homozygous region in one experiment.(49) In conclusion, this study shows that homozygosity mapping can lead to the identification of novel genetic defects in consanguineous as well as nonconsanguineous families....

    [...]

Journal ArticleDOI
16 Oct 2019-BMJ
TL;DR: Self-test kits for various blood or urine analytes, many of which are available direct-to-consumer (DTC) over-the-counter at pharmacies or via the Internet, form an integral part of diabetes management, home pregnancy testing kits, and blood cholesterol tests.
Abstract: Medical tests that are both marketed and sold directly to the public, without the supervision of a health-care professional, are not new. Until recently the market consisted primarily of self-test kits for various blood or urine analytes, many of which are available direct-to-consumer (DTC) over-the-counter at pharmacies or via the Internet. Most notable among these are glucose monitors, which form an integral part of diabetes management, home pregnancy testing kits, and blood cholesterol tests. These kits combine a simple assay device with rudimentary interpretation, whereby the results of the test are displayed on the device itself.

106 citations

Journal ArticleDOI
TL;DR: In this unit, principles and methods for using the Helicos® Genetic Analysis System are discussed.
Abstract: Helicos™ Single Molecule Sequencing (SMS) provides a unique view of genome biology through direct sequencing of cellular nucleic acids in an unbiased manner, providing both accurate quantitation and sequence information. Sample preparation does not require ligation or PCR amplification, avoiding the GC-content and size biases observed in other technologies. DNA is simply sheared, tailed with poly A, and hybridized to a flow cell surface containing oligo-dT for sequencing-by-synthesis of billions of molecules in parallel. This process also requires far less material than other technologies. Gene expression measurements can be done using 1st-strand cDNA-based methods (RNA- Seq) or using a novel approach that allows direct hybridization and sequencing of cellular RNA for the most direct quantitation possible. A diverse array of applications have been successfully performed including genome sequencing for accurate variant detection, ChIP-Seq using picogram quantities of DNA, copy number variation studies from both fresh tumor tissue and FFPE tissue samples, sequencing of ancient and degraded DNAs, small RNA studies leading to the identification of new classes of RNAs and the direct capture and sequencing of RNA from cell quantities as few as 250 cells. Because most next generation sequencing technologies require amplification and a specific size range of target molecules, DNAs not meeting those criteria cannot be sequenced in a reliable manner. Single-molecule sequencing does not suffer from those limitations as no amplification is necessary and degraded or modified molecules can be used directly as templates. Principles and methods for using the Helicos® Genetic Analysis System will be discussed.

106 citations

Journal ArticleDOI
TL;DR: Recommendations to optimize post exercise nutrition should focus on the response of muscle protein synthesis, as it is likely that some degree of increased MPB following exercise is an important component for optimal remodeling.
Abstract: Muscle protein breakdown (MPB) is an important metabolic component of muscle remodeling, adaptation to training, and increasing muscle mass. Degradation of muscle proteins occurs via the integration of three main systems—autophagy and the calpain and ubiquitin-proteasome systems. These systems do not operate independently, and the regulation is complex. Complete degradation of a protein requires some combination of the systems. Determination of MPB in humans is technically challenging, leading to a relative dearth of information. Available information on the dynamic response of MPB primarily comes from stable isotopic methods with expression and activity measures providing complementary information. It seems clear that resistance exercise increases MPB, but not as much as the increase in muscle protein synthesis. Both hyperaminoacidemia and hyperinsulinemia inhibit the post-exercise response of MPB. Available data do not allow a comprehensive examination of the mechanisms behind these responses. Practical nutrition recommendations for interventions to suppress MPB following exercise are often made. However, it is likely that some degree of increased MPB following exercise is an important component for optimal remodeling. At this time, it is not possible to determine the impact of nutrition on any individual muscle protein. Thus, until we can develop and employ better methods to elucidate the role of MPB following exercise and the response to nutrition, recommendations to optimize post exercise nutrition should focus on the response of muscle protein synthesis. The aim of this review is to provide a comprehensive examination of the state of knowledge, including methodological considerations, of the response of MPB to exercise and nutrition in humans.

106 citations


Cites background from "Sequencing technologies-the next ge..."

  • ...Microarrays and RNA-Seq also can be adapted to give information on the epigenetic state of DNA (i.e., methylation, acetylation, etc.)....

    [...]

  • ...Microarrays [52] and RNA-Seq [53] both give a global overview of transcription and this information can be used to examine enriched pathways and processes or to identify potential markers for high or low responders....

    [...]

  • ...Microarray and RNA-Seq are both very sensitive to contamination and as with qRT-PCR, care must be taken in sample preparation....

    [...]

  • ...Whilst qRT-PCR takes a gene by gene approach, global scale technologies such as microarrays [52] and more recently RNA-sequencing (RNA-Seq) [53] also are available to quantify the transcriptional response of muscle to exercise....

    [...]

  • ...Microarrays [52] and RNA-Seq [53] both give a global...

    [...]

Journal ArticleDOI
TL;DR: The single most important limitation of current MPS approaches for mutation analysis is the inability to address low-abundance mutations that turn somatic tissues into mosaics of cells, which could also contribute to somatic diseases other than cancer, including aging.
Abstract: DNA mutations are the source of genetic variation within populations. The majority of mutations with observable effects are deleterious. In humans mutations in the germ line can cause genetic disease. In somatic cells multiple rounds of mutations and selection lead to cancer. The study of genetic variation has progressed rapidly since the completion of the draft sequence of the human genome. Recent advances in sequencing technology, most importantly the introduction of massively parallel sequencing (MPS), have resulted in more than a hundred-fold reduction in the time and cost required for sequencing nucleic acids. These improvements have greatly expanded the use of sequencing as a practical tool for mutation analysis. While in the past the high cost of sequencing limited mutation analysis to selectable markers or small forward mutation targets assumed to be representative for the genome overall, current platforms allow whole genome sequencing for less than $5000. This has already given rise to direct estimates of germline mutation rates in multiple organisms including humans by comparing whole genome sequences between parents and offspring. Here we present a brief history of the field of mutation research, with a focus on classical tools for the measurement of mutation rates. We then review MPS, how it is currently applied and the new insight into human and animal mutation frequencies and spectra that has been obtained from whole genome sequencing. While great progress has been made, we note that the single most important limitation of current MPS approaches for mutation analysis is the inability to address low-abundance mutations that turn somatic tissues into mosaics of cells. Such mutations are at the basis of intra-tumor heterogeneity, with important implications for clinical diagnosis, and could also contribute to somatic diseases other than cancer, including aging. Some possible approaches to gain access to low-abundance mutations are discussed, with a brief overview of new sequencing platforms that are currently waiting in the wings to advance this exploding field even further.

106 citations

References
More filters
Journal ArticleDOI
TL;DR: The RNA-Seq approach to transcriptome profiling that uses deep-sequencing technologies provides a far more precise measurement of levels of transcripts and their isoforms than other methods.
Abstract: RNA-Seq is a recently developed approach to transcriptome profiling that uses deep-sequencing technologies. Studies using this method have already altered our view of the extent and complexity of eukaryotic transcriptomes. RNA-Seq also provides a far more precise measurement of levels of transcripts and their isoforms than other methods. This article describes the RNA-Seq approach, the challenges associated with its application, and the advances made so far in characterizing several eukaryote transcriptomes.

11,528 citations


"Sequencing technologies-the next ge..." refers background in this paper

  • ...For example, in gene-expression studies microarrays are now being replaced by seq-based methods , which can identify and quantify rare transcripts without prior knowledge of a particular gene and can provide information regarding alternative splicing and sequence variation in identified gene...

    [...]

Journal ArticleDOI
TL;DR: Velvet represents a new approach to assembly that can leverage very short reads in combination with read pairs to produce useful assemblies and is in close agreement with simulated results without read-pair information.
Abstract: We have developed a new set of algorithms, collectively called "Velvet," to manipulate de Bruijn graphs for genomic sequence assembly. A de Bruijn graph is a compact representation based on short words (k-mers) that is ideal for high coverage, very short read (25-50 bp) data sets. Applying Velvet to very short reads and paired-ends information only, one can produce contigs of significant length, up to 50-kb N50 length in simulations of prokaryotic data and 3-kb N50 on simulated mammalian BACs. When applied to real Solexa data sets without read pairs, Velvet generated contigs of approximately 8 kb in a prokaryote and 2 kb in a mammalian BAC, in close agreement with our simulated results without read-pair information. Velvet represents a new approach to assembly that can leverage very short reads in combination with read pairs to produce useful assemblies.

9,389 citations

Journal ArticleDOI
15 Sep 2005-Nature
TL;DR: A scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments with 96% coverage at 99.96% accuracy in one run of the machine is described.
Abstract: The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.

8,434 citations

Journal ArticleDOI
20 Feb 2009-Cell
TL;DR: This work has revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access, which has direct implications for fundamental biology as well as disease etiology and treatment.

4,490 citations


"Sequencing technologies-the next ge..." refers background in this paper

  • ...and to elucidate the role of non-coding RNAs in health and diseas...

    [...]

Journal ArticleDOI
20 Feb 2009-Cell
TL;DR: The evolution of long noncoding RNAs and their roles in transcriptional regulation, epigenetic gene regulation, and disease are reviewed.

4,277 citations


"Sequencing technologies-the next ge..." refers background in this paper

  • ...and to elucidate the role of non-coding RNAs in health and diseas...

    [...]