scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sequencing technologies-the next generation

01 Jan 2010-Nature Reviews Genetics (Nature Publishing Group)-Vol. 11, Iss: 1, pp 31-46
TL;DR: A technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments is presented.
Abstract: Demand has never been greater for revolutionary technologies that deliver fast, inexpensive and accurate genome information. This challenge has catalysed the development of next-generation sequencing (NGS) technologies. The inexpensive production of large volumes of sequence data is the primary advantage over conventional methods. Here, I present a technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments. I also outline the broad range of applications for NGS technologies, in addition to providing guidelines for platform selection to address biological questions of interest.

Summary (1 min read)

Jump to:  and [Summary]

Summary

  • DNA sequencing is one of the most important platforms for study in biological systems today.
  • The high-throughput-next generation sequencing technologies delivers fast, inexpensive, and accurate genome information.
  • Next generation sequencing can produce over 100 times more data than methods based on Sanger Sequencing.
  • The next generation sequencing technologies offered from Illumina / Solexa, ABI/SOLiD, 454/Roche, and Helicos has provided unprecedented opportunity for high-throughput functional genomic research.
  • Next generation sequence technologies offer novel and rapid ways for genome-wide characterization and profiling of mRNA's, transcription factor regions, and DNA patterns.

Did you find this useful? Give us your feedback

Content maybe subject to copyright    Report

TEMPLATE DESIGN © 2008
www.PosterPresentations.com
ABSTRACT
Conclusion and Future Work
Next Generation Sequencing
CONTACT INFO
Data Analysis Comparisons
Downstream Analysis
REFERENCES
DNA sequencing is one of the most important platforms for
study in biological systems today. The high-throughput-next
generation sequencing technologies delivers fast,
inexpensive, and accurate genome information. Next
generation sequencing can produce over 100 times more data
than methods based on Sanger Sequencing. The next
generation sequencing technologies offered from Illumina /
Solexa, ABI/SOLiD, 454/Roche, and Helicos has provided
unprecedented opportunity for high–throughput functional
genomic research. Next generation sequence technologies
offer novel and rapid ways for genome-wide characterization
and profiling of mRNAs, transcription factor regions, and DNA
patterns.
Fig. 7) This is a plot of the frequency of each percentage covered for all nodes.
BLAST is in blue, MUMmer is in green.
Sequencing Technologies – the Next Generation,
Micahel L. Metzkerh
Next Generation Sequencing Pipeline Development and Data Analysis
Fig. 9) This is a plot of the coverage of each Node. BLAST points are blue,
MUMmer points are red.
Fig. 6) This is a plot of the frequency of each percentage covered for all contigs.
BLAST is in blue, MUMmer is in green.
454/Roche – 454 Life Sciences is a Biotechnology company
that is a part of Roche and based in Branford, Connecticut.
The center develops ultra-fast high-throughput DNA
sequencing methods and tools.
Illumina/Solexa– Illumina is a company that develops and
manufactures integrated systems for the analysis of gene
variation. Solexa was founded to develop genome
sequencing technology.
ABI/SOLiD - (Sequencing by Oligonucleotide Ligation and
Detection) is a next-generation DNA sequencing technology
developed by Life Technologies and has been commercially
available since 2006. This next generation technology
generates hundreds of millions to billions of small sequence
reads at one time.
Helicos - Helicos's technology images the extension of
individual DNA molecules using a defined primer and
individual fluorescently labeled nucleotides, which contain a
"virtual terminator" preventing incorporation of multiple
nucleotides per cycle.
Julian Pierre
1
, Jordan Taylor
2
, Amit Upadhyay
3
, Bhanu Rekepalli
3
Fig. 8) This is a plot of the coverage of each Contig. BLAST points are blue,
MUMmer points are red.
Using the coverage of
each individual contig
ID, the results for both
BLAST and MUMmer
were plotted. While
BLAST hit more contigs,
there are more contigs
with a higher coverage
that were hit by
MUMmer.
Using the data gathered
from both BLAST and
MUMmer, the frequency
of the amount covered
for each contig was
plotted. From Fig 6), it
can be inferred that
MUMmer hit more
accurately for contigs.
Fig 4) from main.g2.bx.psu.edu
Once the results were found using both the BLAST and
MUMmer search tools, we created a program to see which
sequencing tool had the most hits per contig. The total
number of contigs in the database file is 160,749 and the
total number of nodes in the query file is 552,305. BLAST
returned a total of 123,070 hits and MUMmer returned a
total of 121,829 hits. From the results, MUMmer hit more
accurately than BLAST while BLAST hit more contigs than
MUMmer.
In Next-Generation Sequencing, data analysis is one of the
most expensive processes. While the cost of genome
sequencing goes down, the cost of analyzing data is still
expensive. In the future, the “$1,000 genome will come with
a $20,000 analysis price tag.”
The same process was
done with the Nodes.
From Fig 7), it can be
inferred that BLAST hit
more accurately with
nodes. However, there
are more BLAST results
with lower coverage.
The future of next generation sequencing can be broken
down into a variety of categories such as personalized
medicine, bio fuels, climate change, and other life science
fields.
Personalized Medicine is a medical model that proposes
the customization of medical decision to tailor an
individual
Bio Fuels present a source of alternative energy.
Microalgal biofuels use algae to synthesize the fuel. In
order to optimize the process, an understanding of the
gene-function relationship of algae would prove helpful.
Climate change is the active study of past and future
theoretical models which uses the past climate data to
make future projections.
In conclusion, we hope to contribute the knowledge we
have gained to contribute to fields such as these.
The same process was
done with the Nodes.
While BLAST hit more
Nodes, there are more
Nodes that hit with a
lower coverage using
BLAST.
1 Texas Southern University, 2 Austin Peay State University, 3 University of Tennessee
Next Gen Sequencing uses a wide array of tools to obtain results based
on the genome sequence. The most widely used Tools are BLAST,
HMMER, and MUMmer.
BLAST (Basic Local Alignment Search Tool) is a multi-sequence
alignment tool developed by NIH (National Institute of Health). It is
used find similar regions in different sequences and then compare
their similarities.
MUMmer (Maximum Unique Matches) is a rapid alignment system
used for rapidly aligning entire genomes. It can also align incomplete
genomes and can easily handle 1000’s of contigs from a shotgun
sequencing project.
HMMER (Hidden Markov Modeler) is used for searching sequence
databases for homologs of protein sequences, and for making protein
sequence alignments. It implements methods using probabilistic
models called profile hidden Markov models (HMMs)
Genome Assembly
Sequence Analysis refers to
the process of subjecting a
DNA, RNA or peptide
sequence to a wide range of
analytical methods to:
Compare sequences to find
similarities and infer if they
are Homologous
To identify the features of
the sequence such as gene
structure, distribution,
introns and exons, and
regulation of gene
expression
Identify Sequence
differences and variations
such as mutations
Fig. 1) This is figure shows three different Next Generation Sequencing methods. [2]
Fig. 2) Taken from A Hitchhiker’s Guide to Next-Generation Sequencing, by Gabe Rudy
Fig. 3) Taken from bio.davidson.edu/courses. Shows alignment results for yeast.
Fig 5) from jcvi.org shows the mapping of chr6 of a Human Genome
Julian Pierre – julz_pierre@yahoo.com
Jordan Taylor – jtaylor74@my.apsu.edu
Amit Upadhyay – aupadhy1@utk.edu
Bhanu Rekepalli – brekapal@utk.edu
http://www.roche.com/research_and_development/r_d_overview/
r_d_sites.htm?id=18
http://www.pnas.org/content/99/6/3712/F1.expansion.html
http://www.yerkes.emory.edu/nhp_genomics_core/Services/
Sequencing.html
http://www.illumina.com/technology/solexa_technology.ilmn
http://blast.ncbi.nlm.nih.gov/Blast.cgi
https://main.g2.bx.psu.edu/u/dan/p/fastq
http://ori.dhhs.gov/education/products/n_illinois_u/datamanagement/
datopic.htmll
http://www.jcvi.org/medicago/include/images/chr6.BamHI.maps.jpg
Gabe Rudy, (2010) A Hitchhikers Guide to Next-Generation
Sequencing, :1-9, Golden Helix
[1] John D. McPherson, (2009) Next-Generation Gap, 6:1-4, Nature
Methods Supplement
[2]Michael L. Metzker, (2010) Sequencing Technologies, - the next
generation, 11:1-5, Nature Reviews
Md. Fakruddin,Khanjada Shahnewaj Bin mannan, (2012) Next
Generation sequencing technologies – Principles and prospects,
6:1-9, Research and Reviews in Biosciences
Misra N., Panda P. K., Parida B. K., Mishra B. K., (2012)
Phylogenomic Study of Lipid Genes Involved in Mocroalgal Biofuel
Production – Candidate Gene Mining and Metabolic Pathway
Analyses, Evolutionary Bioinformatics 8:545-564, doi: 10.4137/
EBO.S10159
Galaxy is an open, web-based
platform for data intensive
biomedical research. It can be
used on its own free public
server where you can perform,
reproduce, and share complete
analyses.
An example of how Galaxy
reflects its data is shown in Fig 5.
Two FASTA files related to the same nucleotide sequence
were input into both BLAST and MUMmer and the results
were parsed into tables. Then, the coverage of all hit contigs
and nodes from both programs was found.
Citations
More filters
Journal ArticleDOI
TL;DR: Air, dust and surface sampling strategies are compared, as well as the limits of various methods used to detect and quantify fungal particles and fungal compounds, which identify common needs for future multidisciplinary research and development projects in this field.
Abstract: Indoor fungal contamination has been associated with a wide range of adverse health effects, including infectious diseases, toxic effects and allergies. The diversity of fungi contributes to the complex role that they play in indoor environments and human diseases. Molds have a major impact on public health, and can cause different consequences in hospitals, homes and workplaces. This review presents the methods used to assess fungal contamination in these various environments, and discusses advantages and disadvantages for each method in consideration with different health risks. Air, dust and surface sampling strategies are compared, as well as the limits of various methods are used to detect and quantify fungal particles and fungal compounds. In addition to conventional microscopic and culture approaches, more recent chemical, immunoassay and polymerase chain reaction (PCR)-based methods are described. This article also identifies common needs for future multidisciplinary research and developme...

87 citations


Cites methods from "Sequencing technologies-the next ge..."

  • ...The automated Sanger method is considered as a ‘‘first-generation’’ technology, and newer methods are referred to as next-generation sequencing (Metzker, 2010)....

    [...]

Journal ArticleDOI
TL;DR: This paper presents a meta-anatomy of the central nervous system and some of the mechanisms leading to anxiety, depression, and substance abuse that are known to occur after certain types of injuries.
Abstract: The hypothesis that under some circumstances enteroviral infections can lead to type 1 diabetes (T1D) was proposed several decades ago, based initially on evidence from animal studies and sero-epidemiology. Subsequently, enterovirus RNA has been detected more frequently in serum of patients than in control subjects, but such studies are susceptible to selection bias and reverse causality. Here, we review critically recent evidence from human studies, focusing on longitudinal studies with potential to demonstrate temporal association. Among seven longitudinal birth cohort studies, the evidence that enterovirus infections predict islet autoimmunity is quite inconsistent in our interpretation, due partially, perhaps, to heterogeneity in study design and a limited number of subjects studied. An association between enterovirus and rapid progression from autoimmunity to T1D was reported by one longitudinal study, but although consistent with evidence from animal models, this novel observation awaits replication. It is possible that a potential association with initiation and/or progression of islet autoimmunity can be ascribed to a subgroup of the many enterovirus serotypes, but this has still not been investigated properly. There is a need for larger studies with frequent sample intervals and collection of specimens of sufficient quality and quantity for detailed characterization of enterovirus. More research into the molecular epidemiology of enteroviruses and enterovirus immunity in human populations is also warranted. Ultimately, this knowledge may be used to devise strategies to reduce the risk of T1D in humans.

86 citations

Journal ArticleDOI
TL;DR: Linear amplification for deep sequencing (LADS) as mentioned in this paper is an amplification method that produces representative libraries for Illumina next-generation sequencing within 2 d. The method relies on attaching two different sequencing adapters to blunt-end repaired and A-tailed DNA fragments, wherein one of the adapters is extended with the sequence for the T7 RNA polymerase promoter.
Abstract: Linear amplification for deep sequencing (LADS) is an amplification method that produces representative libraries for Illumina next-generation sequencing within 2 d. The method relies on attaching two different sequencing adapters to blunt-end repaired and A-tailed DNA fragments, wherein one of the adapters is extended with the sequence for the T7 RNA polymerase promoter. Ligated and size-selected DNA fragments are transcribed in vitro with high RNA yields. Subsequent cDNA synthesis is initiated from a primer complementary to the first adapter, ensuring that the library will only contain full-length fragments with two distinct adapters. Contrary to the severely biased representation of AT- or GC-rich fragments in standard PCR-amplified libraries, the sequence coverage in T7-amplified libraries is indistinguishable from that of nonamplified libraries. Moreover, in contrast to amplification-free methods, LADS can generate sequencing libraries from a few nanograms of DNA, which is essential for all applications in which the starting material is limited.

86 citations

Journal ArticleDOI
15 Sep 2011
TL;DR: The multipronged approach that is necessary to circumvent challenges due to genetic heterogeneity to uncover genetic causes of PCD is demonstrated.
Abstract: Primary ciliary dyskinesia (PCD) is an autosomal recessive, rare, genetically heterogeneous condition characterized by oto-sino-pulmonary disease together with situs abnormalities (Kartagener syndrome) owing to abnormal ciliary structure and function. Most patients are currently diagnosed with PCD based on the presence of defective ciliary ultrastructure. However, diagnosis often remains challenging due to variability in the clinical phenotype and ciliary ultrastructural changes. Some patients with PCD have normal ciliary ultrastructure, which further confounds the diagnosis. A genetic test for PCD exists but is of limited value because it investigates only a limited number of mutations in only two genes. The genetics of PCD is complicated owing to the complexity of axonemal structure that is highly conserved through evolution, which is comprised of multiple proteins. Identifying a PCD-causing gene is challenging due to locus and allelic heterogeneity. Despite genetic heterogeneity, multiple tools have been used, and there are 11 known PCD-causing genes. All of these genes combined explain approximately 50% of PCD cases; hence, more genes need to be identified. This review briefly describes the current knowledge regarding the genetics of PCD and focuses on the methodologies used to identify novel PCD-causing genes, including a candidate gene approach using model organisms, next-generation massively parallel sequencing techniques, and the use of genetically isolated populations. In conclusion, we demonstrate the multipronged approach that is necessary to circumvent challenges due to genetic heterogeneity to uncover genetic causes of PCD.

86 citations

Journal ArticleDOI
TL;DR: This paper describes how sequencing libraries can be reproducibly created from 20 pg of input DNA using a modified transpososome-mediated fragmentation technique and provides deep coverage sequence of the Escherichia coli K-12 genome that shows equivalent target coverage to a 1-μg input library prepared using standard Illumina methods.
Abstract: New sequencing technologies can address diverse biomedical questions but are limited by a minimum required DNA input of typically 1 μg. We describe how sequencing libraries can be reproducibly created from 20 pg of input DNA using a modified transpososome-mediated fragmentation technique. Resulting libraries incorporate in-line bar-coding, which facilitates sample multiplexes that can be sequenced using Illumina platforms with the manufacturer's sequencing primer. We demonstrate this technique by providing deep coverage sequence of the Escherichia coli K-12 genome that shows equivalent target coverage to a 1-μg input library prepared using standard Illumina methods. Reducing template quantity does, however, increase the proportion of duplicate reads and enriches coverage in low-GC regions. This finding was confirmed with exhaustive resequencing of a mouse library constructed from 20 pg of gDNA input (about seven haploid genomes) resulting in ∼0.4-fold statistical coverage of uniquely mapped fragments. This implies that a near-complete coverage of the mouse genome is obtainable with this approach using 20 genomes as input. Application of this new method now allows genomic studies from low mass samples and routine preparation of sequencing libraries from enrichment procedures.

86 citations

References
More filters
Journal ArticleDOI
TL;DR: The RNA-Seq approach to transcriptome profiling that uses deep-sequencing technologies provides a far more precise measurement of levels of transcripts and their isoforms than other methods.
Abstract: RNA-Seq is a recently developed approach to transcriptome profiling that uses deep-sequencing technologies. Studies using this method have already altered our view of the extent and complexity of eukaryotic transcriptomes. RNA-Seq also provides a far more precise measurement of levels of transcripts and their isoforms than other methods. This article describes the RNA-Seq approach, the challenges associated with its application, and the advances made so far in characterizing several eukaryote transcriptomes.

11,528 citations


"Sequencing technologies-the next ge..." refers background in this paper

  • ...For example, in gene-expression studies microarrays are now being replaced by seq-based methods , which can identify and quantify rare transcripts without prior knowledge of a particular gene and can provide information regarding alternative splicing and sequence variation in identified gene...

    [...]

Journal ArticleDOI
TL;DR: Velvet represents a new approach to assembly that can leverage very short reads in combination with read pairs to produce useful assemblies and is in close agreement with simulated results without read-pair information.
Abstract: We have developed a new set of algorithms, collectively called "Velvet," to manipulate de Bruijn graphs for genomic sequence assembly. A de Bruijn graph is a compact representation based on short words (k-mers) that is ideal for high coverage, very short read (25-50 bp) data sets. Applying Velvet to very short reads and paired-ends information only, one can produce contigs of significant length, up to 50-kb N50 length in simulations of prokaryotic data and 3-kb N50 on simulated mammalian BACs. When applied to real Solexa data sets without read pairs, Velvet generated contigs of approximately 8 kb in a prokaryote and 2 kb in a mammalian BAC, in close agreement with our simulated results without read-pair information. Velvet represents a new approach to assembly that can leverage very short reads in combination with read pairs to produce useful assemblies.

9,389 citations

Journal ArticleDOI
15 Sep 2005-Nature
TL;DR: A scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments with 96% coverage at 99.96% accuracy in one run of the machine is described.
Abstract: The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.

8,434 citations

Journal ArticleDOI
20 Feb 2009-Cell
TL;DR: This work has revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access, which has direct implications for fundamental biology as well as disease etiology and treatment.

4,490 citations


"Sequencing technologies-the next ge..." refers background in this paper

  • ...and to elucidate the role of non-coding RNAs in health and diseas...

    [...]

Journal ArticleDOI
20 Feb 2009-Cell
TL;DR: The evolution of long noncoding RNAs and their roles in transcriptional regulation, epigenetic gene regulation, and disease are reviewed.

4,277 citations


"Sequencing technologies-the next ge..." refers background in this paper

  • ...and to elucidate the role of non-coding RNAs in health and diseas...

    [...]