scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sequencing technologies-the next generation

01 Jan 2010-Nature Reviews Genetics (Nature Publishing Group)-Vol. 11, Iss: 1, pp 31-46
TL;DR: A technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments is presented.
Abstract: Demand has never been greater for revolutionary technologies that deliver fast, inexpensive and accurate genome information. This challenge has catalysed the development of next-generation sequencing (NGS) technologies. The inexpensive production of large volumes of sequence data is the primary advantage over conventional methods. Here, I present a technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments. I also outline the broad range of applications for NGS technologies, in addition to providing guidelines for platform selection to address biological questions of interest.

Summary (1 min read)

Jump to:  and [Summary]

Summary

  • DNA sequencing is one of the most important platforms for study in biological systems today.
  • The high-throughput-next generation sequencing technologies delivers fast, inexpensive, and accurate genome information.
  • Next generation sequencing can produce over 100 times more data than methods based on Sanger Sequencing.
  • The next generation sequencing technologies offered from Illumina / Solexa, ABI/SOLiD, 454/Roche, and Helicos has provided unprecedented opportunity for high-throughput functional genomic research.
  • Next generation sequence technologies offer novel and rapid ways for genome-wide characterization and profiling of mRNA's, transcription factor regions, and DNA patterns.

Did you find this useful? Give us your feedback

Content maybe subject to copyright    Report

TEMPLATE DESIGN © 2008
www.PosterPresentations.com
ABSTRACT
Conclusion and Future Work
Next Generation Sequencing
CONTACT INFO
Data Analysis Comparisons
Downstream Analysis
REFERENCES
DNA sequencing is one of the most important platforms for
study in biological systems today. The high-throughput-next
generation sequencing technologies delivers fast,
inexpensive, and accurate genome information. Next
generation sequencing can produce over 100 times more data
than methods based on Sanger Sequencing. The next
generation sequencing technologies offered from Illumina /
Solexa, ABI/SOLiD, 454/Roche, and Helicos has provided
unprecedented opportunity for high–throughput functional
genomic research. Next generation sequence technologies
offer novel and rapid ways for genome-wide characterization
and profiling of mRNAs, transcription factor regions, and DNA
patterns.
Fig. 7) This is a plot of the frequency of each percentage covered for all nodes.
BLAST is in blue, MUMmer is in green.
Sequencing Technologies – the Next Generation,
Micahel L. Metzkerh
Next Generation Sequencing Pipeline Development and Data Analysis
Fig. 9) This is a plot of the coverage of each Node. BLAST points are blue,
MUMmer points are red.
Fig. 6) This is a plot of the frequency of each percentage covered for all contigs.
BLAST is in blue, MUMmer is in green.
454/Roche – 454 Life Sciences is a Biotechnology company
that is a part of Roche and based in Branford, Connecticut.
The center develops ultra-fast high-throughput DNA
sequencing methods and tools.
Illumina/Solexa– Illumina is a company that develops and
manufactures integrated systems for the analysis of gene
variation. Solexa was founded to develop genome
sequencing technology.
ABI/SOLiD - (Sequencing by Oligonucleotide Ligation and
Detection) is a next-generation DNA sequencing technology
developed by Life Technologies and has been commercially
available since 2006. This next generation technology
generates hundreds of millions to billions of small sequence
reads at one time.
Helicos - Helicos's technology images the extension of
individual DNA molecules using a defined primer and
individual fluorescently labeled nucleotides, which contain a
"virtual terminator" preventing incorporation of multiple
nucleotides per cycle.
Julian Pierre
1
, Jordan Taylor
2
, Amit Upadhyay
3
, Bhanu Rekepalli
3
Fig. 8) This is a plot of the coverage of each Contig. BLAST points are blue,
MUMmer points are red.
Using the coverage of
each individual contig
ID, the results for both
BLAST and MUMmer
were plotted. While
BLAST hit more contigs,
there are more contigs
with a higher coverage
that were hit by
MUMmer.
Using the data gathered
from both BLAST and
MUMmer, the frequency
of the amount covered
for each contig was
plotted. From Fig 6), it
can be inferred that
MUMmer hit more
accurately for contigs.
Fig 4) from main.g2.bx.psu.edu
Once the results were found using both the BLAST and
MUMmer search tools, we created a program to see which
sequencing tool had the most hits per contig. The total
number of contigs in the database file is 160,749 and the
total number of nodes in the query file is 552,305. BLAST
returned a total of 123,070 hits and MUMmer returned a
total of 121,829 hits. From the results, MUMmer hit more
accurately than BLAST while BLAST hit more contigs than
MUMmer.
In Next-Generation Sequencing, data analysis is one of the
most expensive processes. While the cost of genome
sequencing goes down, the cost of analyzing data is still
expensive. In the future, the “$1,000 genome will come with
a $20,000 analysis price tag.”
The same process was
done with the Nodes.
From Fig 7), it can be
inferred that BLAST hit
more accurately with
nodes. However, there
are more BLAST results
with lower coverage.
The future of next generation sequencing can be broken
down into a variety of categories such as personalized
medicine, bio fuels, climate change, and other life science
fields.
Personalized Medicine is a medical model that proposes
the customization of medical decision to tailor an
individual
Bio Fuels present a source of alternative energy.
Microalgal biofuels use algae to synthesize the fuel. In
order to optimize the process, an understanding of the
gene-function relationship of algae would prove helpful.
Climate change is the active study of past and future
theoretical models which uses the past climate data to
make future projections.
In conclusion, we hope to contribute the knowledge we
have gained to contribute to fields such as these.
The same process was
done with the Nodes.
While BLAST hit more
Nodes, there are more
Nodes that hit with a
lower coverage using
BLAST.
1 Texas Southern University, 2 Austin Peay State University, 3 University of Tennessee
Next Gen Sequencing uses a wide array of tools to obtain results based
on the genome sequence. The most widely used Tools are BLAST,
HMMER, and MUMmer.
BLAST (Basic Local Alignment Search Tool) is a multi-sequence
alignment tool developed by NIH (National Institute of Health). It is
used find similar regions in different sequences and then compare
their similarities.
MUMmer (Maximum Unique Matches) is a rapid alignment system
used for rapidly aligning entire genomes. It can also align incomplete
genomes and can easily handle 1000’s of contigs from a shotgun
sequencing project.
HMMER (Hidden Markov Modeler) is used for searching sequence
databases for homologs of protein sequences, and for making protein
sequence alignments. It implements methods using probabilistic
models called profile hidden Markov models (HMMs)
Genome Assembly
Sequence Analysis refers to
the process of subjecting a
DNA, RNA or peptide
sequence to a wide range of
analytical methods to:
Compare sequences to find
similarities and infer if they
are Homologous
To identify the features of
the sequence such as gene
structure, distribution,
introns and exons, and
regulation of gene
expression
Identify Sequence
differences and variations
such as mutations
Fig. 1) This is figure shows three different Next Generation Sequencing methods. [2]
Fig. 2) Taken from A Hitchhiker’s Guide to Next-Generation Sequencing, by Gabe Rudy
Fig. 3) Taken from bio.davidson.edu/courses. Shows alignment results for yeast.
Fig 5) from jcvi.org shows the mapping of chr6 of a Human Genome
Julian Pierre – julz_pierre@yahoo.com
Jordan Taylor – jtaylor74@my.apsu.edu
Amit Upadhyay – aupadhy1@utk.edu
Bhanu Rekepalli – brekapal@utk.edu
http://www.roche.com/research_and_development/r_d_overview/
r_d_sites.htm?id=18
http://www.pnas.org/content/99/6/3712/F1.expansion.html
http://www.yerkes.emory.edu/nhp_genomics_core/Services/
Sequencing.html
http://www.illumina.com/technology/solexa_technology.ilmn
http://blast.ncbi.nlm.nih.gov/Blast.cgi
https://main.g2.bx.psu.edu/u/dan/p/fastq
http://ori.dhhs.gov/education/products/n_illinois_u/datamanagement/
datopic.htmll
http://www.jcvi.org/medicago/include/images/chr6.BamHI.maps.jpg
Gabe Rudy, (2010) A Hitchhikers Guide to Next-Generation
Sequencing, :1-9, Golden Helix
[1] John D. McPherson, (2009) Next-Generation Gap, 6:1-4, Nature
Methods Supplement
[2]Michael L. Metzker, (2010) Sequencing Technologies, - the next
generation, 11:1-5, Nature Reviews
Md. Fakruddin,Khanjada Shahnewaj Bin mannan, (2012) Next
Generation sequencing technologies – Principles and prospects,
6:1-9, Research and Reviews in Biosciences
Misra N., Panda P. K., Parida B. K., Mishra B. K., (2012)
Phylogenomic Study of Lipid Genes Involved in Mocroalgal Biofuel
Production – Candidate Gene Mining and Metabolic Pathway
Analyses, Evolutionary Bioinformatics 8:545-564, doi: 10.4137/
EBO.S10159
Galaxy is an open, web-based
platform for data intensive
biomedical research. It can be
used on its own free public
server where you can perform,
reproduce, and share complete
analyses.
An example of how Galaxy
reflects its data is shown in Fig 5.
Two FASTA files related to the same nucleotide sequence
were input into both BLAST and MUMmer and the results
were parsed into tables. Then, the coverage of all hit contigs
and nodes from both programs was found.
Citations
More filters
Journal ArticleDOI
TL;DR: A historical perspective on human genome sequencing is provided, current and future sequencing technologies are summarized, issues related to data management and interpretation are highlighted, and research and clinical applications of high-throughput sequencing are considered, with specific emphasis on cardiovascular disease.
Abstract: We are in the midst of a time of great change in genetics that may dramatically impact human biology and medicine. The completion of the human genome project,1,2 the development of low cost, high-throughput parallel sequencing technology, and large-scale studies of genetic variation3 have provided a rich set of techniques and data for the study of genetic disease risk, treatment response, population diversity, and human evolution. Newly-developed sequencing instruments now generate hundreds of millions to billions of short sequences per run, allowing for rapid complete sequencing of human genomes. These technological advances have facilitated a precipitous drop (Figure 1) in the cost per base pair of DNA sequenced. To capitalize on the potential of these technologies for research and clinical applications, translational scientists and clinicians must become familiar with a continuously evolving field. In this review we will provide a historical perspective on human genome sequencing, summarize current and future sequencing technologies, highlight issues related to data management and interpretation, and finally consider research and clinical applications of high-throughput sequencing, with specific emphasis on cardiovascular disease. Open in a separate window Figure 1 Sequencing milestones, costs, and output since completion of the human genome project. Note logarithmic scale for sequencing costs and bases produced per sequence run.

73 citations

Journal ArticleDOI
TL;DR: The study examined microRNA expression and regulatory patterns during an entire bovine lactation cycle to suggest diverse, temporal and physiological signal-dependent regulatory and mediator functions for miRNAs during lactation.
Abstract: The study examined microRNA (miRNA) expression and regulatory patterns during an entire bovine lactation cycle. Total RNA from milk fat samples collected at the lactogenesis (LAC, day1 [D1] and D7), galactopoiesis (GAL, D30, D70, D130, D170 and D230) and involution (INV, D290 and when milk production dropped to 5 kg/day) stages from 9 cows was used for miRNA sequencing. A total of 475 known and 238 novel miRNAs were identified. Fifteen abundantly expressed miRNAs across lactation stages play regulatory roles in basic metabolic, cellular and immunological functions. About 344, 366 and 209 miRNAs were significantly differentially expressed (DE) between GAL and LAC, INV and GAL, and INV and LAC stages, respectively. MiR-29b/miR-363 and miR-874/miR-6254 are important mediators for transition signals from LAC to GAL and from GAL to INV, respectively. Moreover, 58 miRNAs were dynamically DE in all lactation stages and 19 miRNAs were significantly time-dependently DE throughout lactation. Relevant signalling pathways for transition between lactation stages are involved in apoptosis (PTEN and SAPK/JNK), intracellular signalling (protein kinase A, TGF-β and ERK5), cell cycle regulation (STAT3), cytokines, hormones and growth factors (prolactin, growth hormone and glucocorticoid receptor). Overall, our data suggest diverse, temporal and physiological signal-dependent regulatory and mediator functions for miRNAs during lactation.

73 citations

Journal ArticleDOI
TL;DR: The use of microarrays in the brain-behavior context is reviewed and why RNA-Seq is a superior strategy, which has a greater dynamic range, is superior for gene network construction, detects alternative spliced transcripts, and detects allele specific expression.
Abstract: Advances in next-generation sequencing suggest that RNA-Seq is poised to supplant microarray-based approaches for transcriptome analysis. This article briefly reviews the use of microarrays in the brain-behavior context and then illustrates why RNA-Seq is a superior strategy. Compared with microarrays, RNA-Seq has a greater dynamic range, detects both coding and noncoding RNAs, is superior for gene network construction, detects alternative spliced transcripts, detects allele specific expression and can be used to extract genotype information, e.g. nonsynonymous coding single nucleotide polymorphisms. Examples of where RNA-Seq has been used to assess brain gene expression are provided. Despite the advantages of RNA-Seq, some disadvantages remain. These include the high cost of RNA-Seq and the computational complexities associated with data analysis. RNA-Seq embraces the complexity of the transcriptome and provides a mechanism to understand the underlying regulatory code; the potential to inform the brain-behavior relationship is substantial.

72 citations

Journal ArticleDOI
TL;DR: To understand how complex, or ‘advanced’ various forms of cognition are, and to compare them between species for evolutionary studies, the authors need to understand the diversity of neural–computational mechanisms that may be involved and to identify the genetic changes that are necessary to mediate changes in cognitive functions.
Abstract: To understand how complex, or ‘advanced’ various forms of cognition are, and to compare them between species for evolutionary studies, we need to understand the diversity of neural–computational mechanisms that may be involved, and to identify the genetic changes that are necessary to mediate changes in cognitive functions. The same overt cognitive capacity might be mediated by entirely different neural circuitries in different species, with a many-to-one mapping between behavioural routines, computations and their neural implementations. Comparative behavioural research needs to be complemented with a bottom-up approach in which neurobiological and molecular-genetic analyses allow pinpointing of underlying neural and genetic bases that constrain cognitive variation. Often, only very minor differences in circuitry might be needed to generate major shifts in cognitive functions and the possibility that cognitive traits arise by convergence or parallel evolution needs to be taken seriously. Hereditary variation in cognitive traits between individuals of a species might be extensive, and selection experiments on cognitive traits might be a useful avenue to explore how rapidly changes in cognitive abilities occur in the face of pertinent selection pressures.

72 citations

Journal ArticleDOI
TL;DR: This study quantifies ORF fragmentation in draft microbial genomes and its effect on annotation efficacy, and proposes a solution to ameliorate this problem and suggests that accounting for gene fragmentation and its associated biases is important when designing comparative genomic projects.
Abstract: Ongoing technological advances in genome sequencing are allowing bacterial genomes to be sequenced at ever-lower cost. However, nearly all of these new techniques concomitantly decrease genome quality, primarily due to the inability of their relatively short read lengths to bridge certain genomic regions, e.g., those containing repeats. Fragmentation of predicted open reading frames (ORFs) is one possible consequence of this decreased quality. In this study we quantify ORF fragmentation in draft microbial genomes and its effect on annotation efficacy, and we propose a solution to ameliorate this problem. A survey of draft-quality genomes in GenBank revealed that fragmented ORFs comprised > 80% of the predicted ORFs in some genomes, and that increased fragmentation correlated with decreased genome assembly quality. In a more thorough analysis of 25 Streptomyces genomes, fragmentation was especially enriched in some protein classes with repeating, multi-modular structures such as polyketide synthases, non-ribosomal peptide synthetases and serine/threonine kinases. Overall, increased genome fragmentation correlated with increased false-negative Pfam and COG annotation rates and increased false-positive KEGG annotation rates. The false-positive KEGG annotation rate could be ameliorated by linking fragmented ORFs using their orthologs in related genomes. Whereas this strategy successfully linked up to 46% of the total ORF fragments in some genomes, its sensitivity appeared to depend heavily on the depth of sampling of a particular taxon's variable genome. Draft microbial genomes contain many ORF fragments. Where these correspond to the same gene they have particular potential to confound comparative gene content analyses. Given our findings, and the rapid increase in the number of microbial draft quality genomes, we suggest that accounting for gene fragmentation and its associated biases is important when designing comparative genomic projects.

72 citations

References
More filters
Journal ArticleDOI
TL;DR: The RNA-Seq approach to transcriptome profiling that uses deep-sequencing technologies provides a far more precise measurement of levels of transcripts and their isoforms than other methods.
Abstract: RNA-Seq is a recently developed approach to transcriptome profiling that uses deep-sequencing technologies. Studies using this method have already altered our view of the extent and complexity of eukaryotic transcriptomes. RNA-Seq also provides a far more precise measurement of levels of transcripts and their isoforms than other methods. This article describes the RNA-Seq approach, the challenges associated with its application, and the advances made so far in characterizing several eukaryote transcriptomes.

11,528 citations


"Sequencing technologies-the next ge..." refers background in this paper

  • ...For example, in gene-expression studies microarrays are now being replaced by seq-based methods , which can identify and quantify rare transcripts without prior knowledge of a particular gene and can provide information regarding alternative splicing and sequence variation in identified gene...

    [...]

Journal ArticleDOI
TL;DR: Velvet represents a new approach to assembly that can leverage very short reads in combination with read pairs to produce useful assemblies and is in close agreement with simulated results without read-pair information.
Abstract: We have developed a new set of algorithms, collectively called "Velvet," to manipulate de Bruijn graphs for genomic sequence assembly. A de Bruijn graph is a compact representation based on short words (k-mers) that is ideal for high coverage, very short read (25-50 bp) data sets. Applying Velvet to very short reads and paired-ends information only, one can produce contigs of significant length, up to 50-kb N50 length in simulations of prokaryotic data and 3-kb N50 on simulated mammalian BACs. When applied to real Solexa data sets without read pairs, Velvet generated contigs of approximately 8 kb in a prokaryote and 2 kb in a mammalian BAC, in close agreement with our simulated results without read-pair information. Velvet represents a new approach to assembly that can leverage very short reads in combination with read pairs to produce useful assemblies.

9,389 citations

Journal ArticleDOI
15 Sep 2005-Nature
TL;DR: A scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments with 96% coverage at 99.96% accuracy in one run of the machine is described.
Abstract: The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.

8,434 citations

Journal ArticleDOI
20 Feb 2009-Cell
TL;DR: This work has revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access, which has direct implications for fundamental biology as well as disease etiology and treatment.

4,490 citations


"Sequencing technologies-the next ge..." refers background in this paper

  • ...and to elucidate the role of non-coding RNAs in health and diseas...

    [...]

Journal ArticleDOI
20 Feb 2009-Cell
TL;DR: The evolution of long noncoding RNAs and their roles in transcriptional regulation, epigenetic gene regulation, and disease are reviewed.

4,277 citations


"Sequencing technologies-the next ge..." refers background in this paper

  • ...and to elucidate the role of non-coding RNAs in health and diseas...

    [...]