scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sequencing technologies-the next generation

01 Jan 2010-Nature Reviews Genetics (Nature Publishing Group)-Vol. 11, Iss: 1, pp 31-46
TL;DR: A technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments is presented.
Abstract: Demand has never been greater for revolutionary technologies that deliver fast, inexpensive and accurate genome information. This challenge has catalysed the development of next-generation sequencing (NGS) technologies. The inexpensive production of large volumes of sequence data is the primary advantage over conventional methods. Here, I present a technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments. I also outline the broad range of applications for NGS technologies, in addition to providing guidelines for platform selection to address biological questions of interest.

Summary (1 min read)

Jump to:  and [Summary]

Summary

  • DNA sequencing is one of the most important platforms for study in biological systems today.
  • The high-throughput-next generation sequencing technologies delivers fast, inexpensive, and accurate genome information.
  • Next generation sequencing can produce over 100 times more data than methods based on Sanger Sequencing.
  • The next generation sequencing technologies offered from Illumina / Solexa, ABI/SOLiD, 454/Roche, and Helicos has provided unprecedented opportunity for high-throughput functional genomic research.
  • Next generation sequence technologies offer novel and rapid ways for genome-wide characterization and profiling of mRNA's, transcription factor regions, and DNA patterns.

Did you find this useful? Give us your feedback

Content maybe subject to copyright    Report

TEMPLATE DESIGN © 2008
www.PosterPresentations.com
ABSTRACT
Conclusion and Future Work
Next Generation Sequencing
CONTACT INFO
Data Analysis Comparisons
Downstream Analysis
REFERENCES
DNA sequencing is one of the most important platforms for
study in biological systems today. The high-throughput-next
generation sequencing technologies delivers fast,
inexpensive, and accurate genome information. Next
generation sequencing can produce over 100 times more data
than methods based on Sanger Sequencing. The next
generation sequencing technologies offered from Illumina /
Solexa, ABI/SOLiD, 454/Roche, and Helicos has provided
unprecedented opportunity for high–throughput functional
genomic research. Next generation sequence technologies
offer novel and rapid ways for genome-wide characterization
and profiling of mRNAs, transcription factor regions, and DNA
patterns.
Fig. 7) This is a plot of the frequency of each percentage covered for all nodes.
BLAST is in blue, MUMmer is in green.
Sequencing Technologies – the Next Generation,
Micahel L. Metzkerh
Next Generation Sequencing Pipeline Development and Data Analysis
Fig. 9) This is a plot of the coverage of each Node. BLAST points are blue,
MUMmer points are red.
Fig. 6) This is a plot of the frequency of each percentage covered for all contigs.
BLAST is in blue, MUMmer is in green.
454/Roche – 454 Life Sciences is a Biotechnology company
that is a part of Roche and based in Branford, Connecticut.
The center develops ultra-fast high-throughput DNA
sequencing methods and tools.
Illumina/Solexa– Illumina is a company that develops and
manufactures integrated systems for the analysis of gene
variation. Solexa was founded to develop genome
sequencing technology.
ABI/SOLiD - (Sequencing by Oligonucleotide Ligation and
Detection) is a next-generation DNA sequencing technology
developed by Life Technologies and has been commercially
available since 2006. This next generation technology
generates hundreds of millions to billions of small sequence
reads at one time.
Helicos - Helicos's technology images the extension of
individual DNA molecules using a defined primer and
individual fluorescently labeled nucleotides, which contain a
"virtual terminator" preventing incorporation of multiple
nucleotides per cycle.
Julian Pierre
1
, Jordan Taylor
2
, Amit Upadhyay
3
, Bhanu Rekepalli
3
Fig. 8) This is a plot of the coverage of each Contig. BLAST points are blue,
MUMmer points are red.
Using the coverage of
each individual contig
ID, the results for both
BLAST and MUMmer
were plotted. While
BLAST hit more contigs,
there are more contigs
with a higher coverage
that were hit by
MUMmer.
Using the data gathered
from both BLAST and
MUMmer, the frequency
of the amount covered
for each contig was
plotted. From Fig 6), it
can be inferred that
MUMmer hit more
accurately for contigs.
Fig 4) from main.g2.bx.psu.edu
Once the results were found using both the BLAST and
MUMmer search tools, we created a program to see which
sequencing tool had the most hits per contig. The total
number of contigs in the database file is 160,749 and the
total number of nodes in the query file is 552,305. BLAST
returned a total of 123,070 hits and MUMmer returned a
total of 121,829 hits. From the results, MUMmer hit more
accurately than BLAST while BLAST hit more contigs than
MUMmer.
In Next-Generation Sequencing, data analysis is one of the
most expensive processes. While the cost of genome
sequencing goes down, the cost of analyzing data is still
expensive. In the future, the “$1,000 genome will come with
a $20,000 analysis price tag.”
The same process was
done with the Nodes.
From Fig 7), it can be
inferred that BLAST hit
more accurately with
nodes. However, there
are more BLAST results
with lower coverage.
The future of next generation sequencing can be broken
down into a variety of categories such as personalized
medicine, bio fuels, climate change, and other life science
fields.
Personalized Medicine is a medical model that proposes
the customization of medical decision to tailor an
individual
Bio Fuels present a source of alternative energy.
Microalgal biofuels use algae to synthesize the fuel. In
order to optimize the process, an understanding of the
gene-function relationship of algae would prove helpful.
Climate change is the active study of past and future
theoretical models which uses the past climate data to
make future projections.
In conclusion, we hope to contribute the knowledge we
have gained to contribute to fields such as these.
The same process was
done with the Nodes.
While BLAST hit more
Nodes, there are more
Nodes that hit with a
lower coverage using
BLAST.
1 Texas Southern University, 2 Austin Peay State University, 3 University of Tennessee
Next Gen Sequencing uses a wide array of tools to obtain results based
on the genome sequence. The most widely used Tools are BLAST,
HMMER, and MUMmer.
BLAST (Basic Local Alignment Search Tool) is a multi-sequence
alignment tool developed by NIH (National Institute of Health). It is
used find similar regions in different sequences and then compare
their similarities.
MUMmer (Maximum Unique Matches) is a rapid alignment system
used for rapidly aligning entire genomes. It can also align incomplete
genomes and can easily handle 1000’s of contigs from a shotgun
sequencing project.
HMMER (Hidden Markov Modeler) is used for searching sequence
databases for homologs of protein sequences, and for making protein
sequence alignments. It implements methods using probabilistic
models called profile hidden Markov models (HMMs)
Genome Assembly
Sequence Analysis refers to
the process of subjecting a
DNA, RNA or peptide
sequence to a wide range of
analytical methods to:
Compare sequences to find
similarities and infer if they
are Homologous
To identify the features of
the sequence such as gene
structure, distribution,
introns and exons, and
regulation of gene
expression
Identify Sequence
differences and variations
such as mutations
Fig. 1) This is figure shows three different Next Generation Sequencing methods. [2]
Fig. 2) Taken from A Hitchhiker’s Guide to Next-Generation Sequencing, by Gabe Rudy
Fig. 3) Taken from bio.davidson.edu/courses. Shows alignment results for yeast.
Fig 5) from jcvi.org shows the mapping of chr6 of a Human Genome
Julian Pierre – julz_pierre@yahoo.com
Jordan Taylor – jtaylor74@my.apsu.edu
Amit Upadhyay – aupadhy1@utk.edu
Bhanu Rekepalli – brekapal@utk.edu
http://www.roche.com/research_and_development/r_d_overview/
r_d_sites.htm?id=18
http://www.pnas.org/content/99/6/3712/F1.expansion.html
http://www.yerkes.emory.edu/nhp_genomics_core/Services/
Sequencing.html
http://www.illumina.com/technology/solexa_technology.ilmn
http://blast.ncbi.nlm.nih.gov/Blast.cgi
https://main.g2.bx.psu.edu/u/dan/p/fastq
http://ori.dhhs.gov/education/products/n_illinois_u/datamanagement/
datopic.htmll
http://www.jcvi.org/medicago/include/images/chr6.BamHI.maps.jpg
Gabe Rudy, (2010) A Hitchhikers Guide to Next-Generation
Sequencing, :1-9, Golden Helix
[1] John D. McPherson, (2009) Next-Generation Gap, 6:1-4, Nature
Methods Supplement
[2]Michael L. Metzker, (2010) Sequencing Technologies, - the next
generation, 11:1-5, Nature Reviews
Md. Fakruddin,Khanjada Shahnewaj Bin mannan, (2012) Next
Generation sequencing technologies – Principles and prospects,
6:1-9, Research and Reviews in Biosciences
Misra N., Panda P. K., Parida B. K., Mishra B. K., (2012)
Phylogenomic Study of Lipid Genes Involved in Mocroalgal Biofuel
Production – Candidate Gene Mining and Metabolic Pathway
Analyses, Evolutionary Bioinformatics 8:545-564, doi: 10.4137/
EBO.S10159
Galaxy is an open, web-based
platform for data intensive
biomedical research. It can be
used on its own free public
server where you can perform,
reproduce, and share complete
analyses.
An example of how Galaxy
reflects its data is shown in Fig 5.
Two FASTA files related to the same nucleotide sequence
were input into both BLAST and MUMmer and the results
were parsed into tables. Then, the coverage of all hit contigs
and nodes from both programs was found.
Citations
More filters
Journal ArticleDOI
22 Jun 2011-PLOS ONE
TL;DR: The de novo assembly of Taxus mairei transcriptome using Illumina paired-end sequencing technology provides the most comprehensive sequence resource available for Taxus study and will help define mechanisms of tissue specific functions and secondary metabolism in non-model plant organisms.
Abstract: Background Illumina second generation sequencing is now an efficient route for generating enormous sequence collections that represent expressed genes and quantitate expression level. Taxus is a world-wide endangered gymnosperm genus and forms an important anti-cancer medicinal resource, but the large and complex genomes of Taxus have hindered the development of genomic resources. The research of its tissue-specific transcriptome is absent. There is also no study concerning the association between the plant transcriptome and metabolome with respect to the plant tissue type.

188 citations


Cites background from "Sequencing technologies-the next ge..."

  • ...The inexpensive production of large volumes of sequence data via second generation sequencing is the primary advantage over conventional methods [10]....

    [...]

Journal ArticleDOI
TL;DR: The study group recommends target gene panels for screening of germ line DNA, technical adaptations to address different modes of disease transmission, orthogonal validation of NGS findings, standardized classification of variant pathogenicity and uniform reporting of the findings.
Abstract: As a large number of genes have been implicated in the development of hereditary phaeochromocytomas and paragangliomas (PPGLs), next-generation sequencing (NGS) technology is ideally suited for carrying out genetic screening. This Consensus Statement proposes specific recommendations for the use of diagnostic NGS in hereditary PPGLs.

188 citations

Journal ArticleDOI
21 Nov 2012-PLOS ONE
TL;DR: Novel insight is provided into the methods that are most important in isolating high quality RNA for sequencing and assembling plant transcriptomes and the methods and recommendations provided here could increase the efficiency and decrease the cost of RNA sequencing for individual labs and genome centers.
Abstract: Next-generation sequencing plays a central role in the characterization and quantification of transcriptomes. Although numerous metrics are purported to quantify the quality of RNA, there have been no large-scale empirical evaluations of the major determinants of sequencing success. We used a combination of existing and newly developed methods to isolate total RNA from 1115 samples from 695 plant species in 324 families, which represents >900 million years of phylogenetic diversity from green algae through flowering plants, including many plants of economic importance. We then sequenced 629 of these samples on Illumina GAIIx and HiSeq platforms and performed a large comparative analysis to identify predictors of RNA quality and the diversity of putative genes (scaffolds) expressed within samples. Tissue types (e.g., leaf vs. flower) varied in RNA quality, sequencing depth and the number of scaffolds. Tissue age also influenced RNA quality but not the number of scaffolds ≥1000 bp. Overall, 36% of the variation in the number of scaffolds was explained by metrics of RNA integrity (RIN score), RNA purity (OD 260/230), sequencing platform (GAIIx vs HiSeq) and the amount of total RNA used for sequencing. However, our results show that the most commonly used measures of RNA quality (e.g., RIN) are weak predictors of the number of scaffolds because Illumina sequencing is robust to variation in RNA quality. These results provide novel insight into the methods that are most important in isolating high quality RNA for sequencing and assembling plant transcriptomes. The methods and recommendations provided here could increase the efficiency and decrease the cost of RNA sequencing for individual labs and genome centers.

188 citations

Journal ArticleDOI
TL;DR: Here, the lab's efforts to develop high-resolution and high-throughput HLA DNA typing using the 454 Sequencing System are reviewed, and the potential future developments and applications of HLADNA typing are discussed.
Abstract: The human leukocyte antigen (HLA) class I and class II loci are the most polymorphic genes in the human genome, with a highly clustered and patchwork pattern of sequence motifs. In the three decades since the first HLA gene was isolated by molecular cloning (a cDNA clone of HLA-B7), thousands of alleles have been identified and the names and sequences of all known alleles have been curated in the IMGT/HLA database. This extensive allelic diversity made and continues to make high-resolution HLA DNA typing very challenging. The first attempt at HLA DNA typing involved restriction fragment length polymorphism (RFLP) analysis, but this approach had many limitations. The development of PCR in 1985 allowed for the amplification of the polymorphic exons of the HLA class I and class II genes and the analysis of the polymorphic sequence motifs with sequence-specific oligonucleotide (SSO) hybridization probes. The immobilization of these probes on membranes and later on beads, along with primer sets for sequence-specific priming (SSP), gave rise to the current set of HLA typing reagents. Sanger sequencing has provided high-resolution typing but, in many cases, genotyping 'ambiguity' remains an issue. In the past few years, the introduction of next-generation sequencing, with the critical properties of massively parallel and clonal sequencing, has significantly reduced HLA genotyping ambiguity. Here, our lab's efforts to develop high-resolution and high-throughput HLA DNA typing using the 454 Sequencing System are reviewed, and the potential future developments and applications of HLA DNA typing are discussed.

187 citations

Journal ArticleDOI
16 Mar 2012-Science
TL;DR: A deeper analysis of the sequencing data is required to discern true differences between RNA and DNA from potential artifacts.
Abstract: Li et al. (Research Articles, 1 July 2011, p. 53; published online 19 May 2011) reported widespread differences between the RNA and DNA sequences of the same human cells, including all 12 possible mismatch types. Before accepting such a fundamental claim, a deeper analysis of the sequencing data is required to discern true differences between RNA and DNA from potential artifacts.

187 citations

References
More filters
Journal ArticleDOI
TL;DR: The RNA-Seq approach to transcriptome profiling that uses deep-sequencing technologies provides a far more precise measurement of levels of transcripts and their isoforms than other methods.
Abstract: RNA-Seq is a recently developed approach to transcriptome profiling that uses deep-sequencing technologies. Studies using this method have already altered our view of the extent and complexity of eukaryotic transcriptomes. RNA-Seq also provides a far more precise measurement of levels of transcripts and their isoforms than other methods. This article describes the RNA-Seq approach, the challenges associated with its application, and the advances made so far in characterizing several eukaryote transcriptomes.

11,528 citations


"Sequencing technologies-the next ge..." refers background in this paper

  • ...For example, in gene-expression studies microarrays are now being replaced by seq-based methods , which can identify and quantify rare transcripts without prior knowledge of a particular gene and can provide information regarding alternative splicing and sequence variation in identified gene...

    [...]

Journal ArticleDOI
TL;DR: Velvet represents a new approach to assembly that can leverage very short reads in combination with read pairs to produce useful assemblies and is in close agreement with simulated results without read-pair information.
Abstract: We have developed a new set of algorithms, collectively called "Velvet," to manipulate de Bruijn graphs for genomic sequence assembly. A de Bruijn graph is a compact representation based on short words (k-mers) that is ideal for high coverage, very short read (25-50 bp) data sets. Applying Velvet to very short reads and paired-ends information only, one can produce contigs of significant length, up to 50-kb N50 length in simulations of prokaryotic data and 3-kb N50 on simulated mammalian BACs. When applied to real Solexa data sets without read pairs, Velvet generated contigs of approximately 8 kb in a prokaryote and 2 kb in a mammalian BAC, in close agreement with our simulated results without read-pair information. Velvet represents a new approach to assembly that can leverage very short reads in combination with read pairs to produce useful assemblies.

9,389 citations

Journal ArticleDOI
15 Sep 2005-Nature
TL;DR: A scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments with 96% coverage at 99.96% accuracy in one run of the machine is described.
Abstract: The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.

8,434 citations

Journal ArticleDOI
20 Feb 2009-Cell
TL;DR: This work has revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access, which has direct implications for fundamental biology as well as disease etiology and treatment.

4,490 citations


"Sequencing technologies-the next ge..." refers background in this paper

  • ...and to elucidate the role of non-coding RNAs in health and diseas...

    [...]

Journal ArticleDOI
20 Feb 2009-Cell
TL;DR: The evolution of long noncoding RNAs and their roles in transcriptional regulation, epigenetic gene regulation, and disease are reviewed.

4,277 citations


"Sequencing technologies-the next ge..." refers background in this paper

  • ...and to elucidate the role of non-coding RNAs in health and diseas...

    [...]