scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Serine, glycine and one-carbon units: cancer metabolism in full circle

01 Aug 2013-Nature Reviews Cancer (NIH Public Access)-Vol. 13, Iss: 8, pp 572-583
TL;DR: Genetic and functional evidence suggests that hyperactivation of this pathway is a driver of oncogenesis and establishes a link to cellular epigenetic status, which could present opportunities for translation into precision cancer medicine.
Abstract: One-carbon metabolism involving the folate and methionine cycles integrates nutritional status from amino acids, glucose and vitamins, and generates diverse outputs, such as the biosynthesis of lipids, nucleotides and proteins, the maintenance of redox status and the substrates for methylation reactions. Long considered a 'housekeeping' process, this pathway has recently been shown to have additional complexity. Genetic and functional evidence suggests that hyperactivation of this pathway is a driver of oncogenesis and establishes a link to cellular epigenetic status. Given the wealth of clinically available agents that target one-carbon metabolism, these new findings could present opportunities for translation into precision cancer medicine.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A conceptual framework to understand how and why metabolic reprogramming occurs in tumor cells, and the mechanisms linking altered metabolism to tumorigenesis and metastasis will progressively support the development of new strategies to treat human cancer.
Abstract: Tumors reprogram pathways of nutrient acquisition and metabolism to meet the bioenergetic, biosynthetic, and redox demands of malignant cells. These reprogrammed activities are now recognized as hallmarks of cancer, and recent work has uncovered remarkable flexibility in the specific pathways activated by tumor cells to support these key functions. In this perspective, we provide a conceptual framework to understand how and why metabolic reprogramming occurs in tumor cells, and the mechanisms linking altered metabolism to tumorigenesis and metastasis. Understanding these concepts will progressively support the development of new strategies to treat human cancer.

1,850 citations

Journal ArticleDOI
TL;DR: An updated overview of glutamine metabolism and its involvement in tumorigenesis in vitro and in vivo is provided, and the recent potential applications of basic science discoveries in the clinical setting are explored.
Abstract: The resurgence of research into cancer metabolism has recently broadened interests beyond glucose and the Warburg effect to other nutrients, including glutamine. Because oncogenic alterations of metabolism render cancer cells addicted to nutrients, pathways involved in glycolysis or glutaminolysis could be exploited for therapeutic purposes. In this Review, we provide an updated overview of glutamine metabolism and its involvement in tumorigenesis in vitro and in vivo, and explore the recent potential applications of basic science discoveries in the clinical setting.

1,285 citations

Journal ArticleDOI
TL;DR: The fundamentals of mammalian 1C metabolism, including the pathways active in different compartments, cell types, and biological states, are reviewed and new opportunities for selective therapeutic intervention are highlighted.

1,126 citations

Journal ArticleDOI
TL;DR: Accumulating evidence now suggests that mitochondrial bioenergetics, biosynthesis and signaling are required for tumorigenesis, and emerging studies have begun to demonstrate that mitochondrial metabolism is potentially a fruitful arena for cancer therapy.
Abstract: Mitochondria have a well-recognized role in the production of ATP and the intermediates needed for macromolecule biosynthesis, such as nucleotides. Mitochondria also participate in the activation of signaling pathways. Overall, accumulating evidence now suggests that mitochondrial bioenergetics, biosynthesis and signaling are required for tumorigenesis. Thus, emerging studies have begun to demonstrate that mitochondrial metabolism is potentially a fruitful arena for cancer therapy. In this Perspective, we highlight recent developments in targeting mitochondrial metabolism for the treatment of cancer.

1,070 citations

Journal ArticleDOI
TL;DR: The PI3K–AKT signalling network is discussed and its control of cancer cell metabolism through both direct and indirect regulation of nutrient transport and metabolic enzymes, thereby connecting oncogenic signalling and metabolic reprogramming to support cancer cell survival and proliferation.
Abstract: The altered metabolic programme of cancer cells facilitates their cell-autonomous proliferation and survival. In normal cells, signal transduction pathways control core cellular functions, including metabolism, to couple the signals from exogenous growth factors, cytokines or hormones to adaptive changes in cell physiology. The ubiquitous, growth factor-regulated phosphoinositide 3-kinase (PI3K)-AKT signalling network has diverse downstream effects on cellular metabolism, through either direct regulation of nutrient transporters and metabolic enzymes or the control of transcription factors that regulate the expression of key components of metabolic pathways. Aberrant activation of this signalling network is one of the most frequent events in human cancer and serves to disconnect the control of cell growth, survival and metabolism from exogenous growth stimuli. Here we discuss our current understanding of the molecular events controlling cellular metabolism downstream of PI3K and AKT and of how these events couple two major hallmarks of cancer: growth factor independence through oncogenic signalling and metabolic reprogramming to support cell survival and proliferation.

860 citations

References
More filters
Journal ArticleDOI
22 May 2009-Science
TL;DR: It is proposed that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass needed to produce a new cell.
Abstract: In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed “the Warburg effect.” Aerobic glycolysis is an inefficient way to generate adenosine 5′-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.

12,380 citations

Journal ArticleDOI
06 Jan 2000-Nature
TL;DR: It is proposed that distinct histone modifications, on one or more tails, act sequentially or in combination to form a ‘histone code’ that is, read by other proteins to bring about distinct downstream events.
Abstract: Histone proteins and the nucleosomes they form with DNA are the fundamental building blocks of eukaryotic chromatin. A diverse array of post-translational modifications that often occur on tail domains of these proteins has been well documented. Although the function of these highly conserved modifications has remained elusive, converging biochemical and genetic evidence suggests functions in several chromatin-based processes. We propose that distinct histone modifications, on one or more tails, act sequentially or in combination to form a 'histone code' that is, read by other proteins to bring about distinct downstream events.

8,265 citations

Journal ArticleDOI
TL;DR: The recurrence score has been validated as quantifying the likelihood of distant recurrence in tamoxifen-treated patients with node-negative, estrogen-receptor-positive breast cancer and could be used as a continuous function to predict distant recurrent in individual patients.
Abstract: background The likelihood of distant recurrence in patients with breast cancer who have no involved lymph nodes and estrogen-receptor–positive tumors is poorly defined by clinical and histopathological measures. methods We tested whether the results of a reverse-transcriptase–polymerase-chain-reaction (RT-PCR) assay of 21 prospectively selected genes in paraffin-embedded tumor tissue would correlate with the likelihood of distant recurrence in patients with node-negative, tamoxifen-treated breast cancer who were enrolled in the National Surgical Adjuvant Breast and Bowel Project clinical trial B-14. The levels of expression of 16 cancerrelated genes and 5 reference genes were used in a prospectively defined algorithm to calculate a recurrence score and to determine a risk group (low, intermediate, or high) for each patient. results Adequate RT-PCR profiles were obtained in 668 of 675 tumor blocks. The proportions of patients categorized as having a low, intermediate, or high risk by the RT-PCR assay were 51, 22, and 27 percent, respectively. The Kaplan–Meier estimates of the rates of distant recurrence at 10 years in the low-risk, intermediate-risk, and high-risk groups were 6.8 percent (95 percent confidence interval, 4.0 to 9.6), 14.3 percent (95 percent confidence interval, 8.3 to 20.3), and 30.5 percent (95 percent confidence interval, 23.6 to 37.4). The rate in the low-risk group was significantly lower than that in the high-risk group (P<0.001). In a multivariate Cox model, the recurrence score provided significant predictive power that was independent of age and tumor size (P<0.001). The recurrence score was also predictive of overall survival (P<0.001) and could be used as a continuous function to predict distant recurrence in individual patients. conclusions The recurrence score has been validated as quantifying the likelihood of distant recurrence in tamoxifen-treated patients with node-negative, estrogen-receptor–positive breast cancer.

5,685 citations

Journal ArticleDOI
TL;DR: It is demonstrated that gemcitabine is more effective than 5-FU in alleviation of some disease-related symptoms in patients with advanced, symptomatic pancreas cancer and confers a modest survival advantage over treatment with5-FU.
Abstract: PURPOSEMost patients with advanced pancreas cancer experience pain and must limit their daily activities because of tumor-related symptoms. To date, no treatment has had a significant impact on the disease. In early studies with gemcitabine, patients with pancreas cancer experienced an improvement in disease-related symptoms. Based on those findings, a definitive trial was performed to assess the effectiveness of gemcitabine in patients with newly diagnosed advanced pancreas cancer.PATIENTS AND METHODSOne hundred twenty-six patients with advanced symptomatic pancreas cancer completed a lead-in period to characterize and stabilize pain and were randomized to receive either gemcitabine 1,000 mg/m2 weekly x 7 followed by 1 week of rest, then weekly x 3 every 4 weeks thereafter (63 patients), or to fluorouracil (5-FU) 600 mg/m2 once weekly (63 patients). The primary efficacy measure was clinical benefit response, which was a composite of measurements of pain (analgesic consumption and pain intensity), Karnofs...

5,515 citations

Journal ArticleDOI
TL;DR: It is argued that modulating the unique redox regulatory mechanisms of cancer cells might be an effective strategy to eliminate these cells.
Abstract: Increased generation of reactive oxygen species (ROS) and an altered redox status have long been observed in cancer cells, and recent studies suggest that this biochemical property of cancer cells can be exploited for therapeutic benefits. Cancer cells in advanced stage tumours frequently exhibit multiple genetic alterations and high oxidative stress, suggesting that it might be possible to preferentially eliminate these cells by pharmacological ROS insults. However, the upregulation of antioxidant capacity in adaptation to intrinsic oxidative stress in cancer cells can confer drug resistance. Abrogation of such drug-resistant mechanisms by redox modulation could have significant therapeutic implications. We argue that modulating the unique redox regulatory mechanisms of cancer cells might be an effective strategy to eliminate these cells.

4,369 citations

Related Papers (5)