scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Serological investigation of asymptomatic cases of SARS-CoV-2 infection reveals weak and declining antibody responses.

TL;DR: In this paper, the authors conducted a serosurvey of asymptomatic infections among food workers and performed serological and cellular response analyses of SARS-CoV-2 infection cases in Wuhan, the original epicenter of the COVID-19 outbreak.
Abstract: Without an effective vaccine against SARS-CoV-2, the build-up of herd immunity through natural infection has been suggested as a means to control COVID-19. Although population immunity is typically estimated by the serological investigation of recovered patients, humoral immunity in asymptomatic subjects has not been well studied, although they represent a large proportion of all SARS-CoV-2 infection cases. In this study, we conducted a serosurvey of asymptomatic infections among food workers and performed serological and cellular response analyses of asymptomatic subjects in Wuhan, the original epicenter of the COVID-19 outbreak. Our data showed that up to 5.91% of the food workers carried SARS-CoV-2 IgG antibodies asymptomatically; however, in 90.4% of them, the antibody level declined over a 2-week period. IgM and IgG antibodies, including neutralizing antibodies, were significantly lower in asymptomatic subjects than in recovered symptomatic patients with similar disease courses. Furthermore, the asymptomatic subjects showed lymphopenia and a prominent decrease in the B-cell population, as well as a low frequency of antibody-secreting cells and a low cytokine response. These factors probably contributed to the low and unsustained antibody levels in asymptomatic subjects. Our results show that asymptomatic subjects are likely to be vulnerable to SARS-CoV-2 reinfection, and neither the proportion of population immunity nor the breadth of immune responses is sufficient for herd immunity.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a prospective cohort study was conducted over two visits, 3 to 6 months apart, between May 2020 and February 2021, where at risk individuals with and without SARS-CoV-2 for reinfection were prospectively followed and monitored the spike and nucleocapsid antibodies.
Abstract: Uncertainty exists whether mild COVID-19 confers immunity to reinfection. Questions also remain regarding the persistence of antibodies against SARS-CoV-2 after mild infection. We prospectively followed at-risk individuals with and without SARS-CoV-2 for reinfection and monitored the spike and nucleocapsid antibodies. This prospective cohort study was conducted over two visits, 3 to 6 months apart, between May 2020 and February 2021. Adults with and without COVID-19, verified by FDA EUA-approved SARS-CoV-2 RT-PCR assays, were screened for spike and nucleocapsid antibody responses using FDA EUA-approved immunoassays and for pseudoviral neutralization activity. The subjects were monitored for symptoms, exposure to COVID-19, COVID-19 testing, seroconversion, reinfection, and vaccination. A total of 653 subjects enrolled; 129 (20%) had a history of COVID-19 verified by RT-PCR at enrollment. Most had mild disease, with only three requiring hospitalization. No initially seropositive subjects experienced a subsequent COVID-19 infection during the follow-up versus 15 infections among initially seronegative subjects (infection rates of 0.00 versus 2.05 per 10,000 days at risk [P = 0.0485]). In all, 90% of SARS-CoV-2-positive subjects produced spike and nucleocapsid responses, and all but one of these had persistent antibody levels at follow-up. Pseudoviral neutralization activity was widespread among participants, did not decrease over time, and correlated with clinical antibody assays. Reinfection with SARS-CoV-2 was not observed among individuals with mild clinical COVID-19, while infections continued in a group without known prior infection. Spike and nucleocapsid COVID-19 antibodies were associated with almost all infections and persisted at stable levels for the study duration. IMPORTANCE This article demonstrates that people who have mild COVID-19 illnesses and produce antibodies are protected from reinfection for up to 6 months afterward. The antibodies that people produce in this situation are stable for up to 6 months as well. Clinical antibody assays correlate well with evidence of antibody-related viral neutralization activity.

13 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the quantity and quality of SARS-CoV-2 antibody response in 846 specimens from 350 patients, comparing BNT162b2-vaccinated individuals (19 previously diagnosed with COVID-19, termed RecoVax; and 49 never diagnosed, termed NaiveVax) with 122 hospitalized unvaccinated (HospNoVax), and 160 outpatient unvaccinate (OutPtNoVsax) COVID 19 patients.
Abstract: Longitudinal studies are needed to evaluate the SARS-CoV-2 mRNA vaccine antibody response under real-world conditions. This longitudinal study investigated the quantity and quality of SARS-CoV-2 antibody response in 846 specimens from 350 patients, comparing BNT162b2-vaccinated individuals (19 previously diagnosed with COVID-19, termed RecoVax; and 49 never diagnosed, termed NaiveVax) with 122 hospitalized unvaccinated (HospNoVax) and 160 outpatient unvaccinated (OutPtNoVax) COVID-19 patients. NaiveVax experienced delay in generating SARS-CoV-2 total antibodies (TAb) and surrogate neutralizing antibodies (SNAb) after the first vaccine dose (D1) but rapid increase in antibody levels after the second dose (D2). However, these never reached RecoVax's robust levels. In fact, NaiveVax TAb and SNAb levels decreased 4 weeks after D2. For the most part, RecoVax TAb persisted, after reaching maximal levels 2 weeks after D2, but SNAb decreased significantly about 6 months after D1. Although NaiveVax avidity lagged behind that of RecoVax for most of the follow-up periods, NaiveVax did reach similar avidity by about 6 months after D1. These data suggest that 1 vaccine dose elicits maximal antibody response in RecoVax and may be sufficient. Also, despite decreasing levels in TAb and SNAb over time, long-term avidity may be a measure worth evaluating and possibly correlating to vaccine efficacy.

12 citations

Journal ArticleDOI
TL;DR: It was demonstrated that children may exert a potent and prolonged adaptive anti-SARS-CoV-2 immune response, with significant cross-reactions against other human Corona Viruses, that might contribute to disease sparing effect in this age range.
Abstract: The newly identified strain of the Coronaviridae family called severe acute respiratory syndrome (SARS-CoV-2) recently became the most significant health threat for adults and children. Some main predictors of severe clinical course in patients with SARS-CoV-2 infection are age and concomitant health conditions. Therefore, the proper evaluation of SARS-CoV-2-specific immunity is urgently required to understand and predict the spectrum of possible clinical phenotypes and recommend vaccination options and regimens in children. Furthermore, it is critical to characterize the nature of SARS-CoV-2-specific immune responses in children following asymptomatic infection and COVID-19 and other related conditions such as multisystem inflammatory syndrome (MIS-C), para-infectious and late postinfectious consequences. Recent studies involving children revealed a variety of cytokines, T cells and antibody responses in the pathogenesis of the disease. Moreover, different clinical scenarios in children were observed-asymptomatic seroprevalence, acute SARS-CoV-2 infection, and rarely severe COVID-19 with typical cytokine storm, MIS-C, long COVID-19, etc. Therefore, to gain a better clinical view, adequate diagnostic criteria and treatment algorithms, it is essential to create a realistic picture of the immunological puzzle of SARS-CoV-2 infection in different age groups. Finally, it was demonstrated that children may exert a potent and prolonged adaptive anti-SARS-CoV-2 immune response, with significant cross-reactions against other human Corona Viruses, that might contribute to disease sparing effect in this age range. However, the immunopathology of the virus has to be elucidated first.

9 citations

Journal ArticleDOI
TL;DR: Observations suggest T cell responses to SARS-CoV-2 are the dominant long-term protective mechanism following either infection or vaccination.
Abstract: ABSTRACT Introduction The immunological response to COVID-19 is only partly understood. It is increasingly clear that the virus triggers an inappropriate host inflammatory reaction in patients experiencing severe disease. Areas covered The role of antibodies in COVID-19 remains to be fully defined. There is evidence for both protection and harm in different clinical syndromes triggered by SARS-CoV-2. Many patients dying from COVID-19 had both high titers of antibodies to SARS-CoV-2 and elevated viral loads. The uncertain protective role of humoral immunity is mirrored by the lack of benefit of therapeutic convalescent plasma infusions in COVID-19. In contrast, there is increasing evidence that a vigorous T-cell response is protective. Delayed or low avidity T cell reactions were seen in patients suffering severe COVID-19. Expert opinion These observations suggest T cell responses to SARS-CoV-2 are the dominant long-term protective mechanism following either infection or vaccination. The magnitude and quality of the antibody response is likely to reflect underlying T cell immunity to SARS-CoV-2. Much of what has been learned about COVID-19 will need to be revised following the recent rapid emergence and dominance of the omicron variant of SARS-CoV-2.

8 citations

References
More filters
Journal ArticleDOI
TL;DR: During the first 2 months of the current outbreak, Covid-19 spread rapidly throughout China and caused varying degrees of illness, and patients often presented without fever, and many did not have abnormal radiologic findings.
Abstract: Background Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of...

22,622 citations

Journal ArticleDOI
03 Feb 2020-Nature
TL;DR: Identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China, and it is shown that this virus belongs to the species of SARSr-CoV, indicates that the virus is related to a bat coronav virus.
Abstract: Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1–4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5–7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV. Characterization of full-length genome sequences from patients infected with a new coronavirus (2019-nCoV) shows that the sequences are nearly identical and indicates that the virus is related to a bat coronavirus.

16,857 citations

Journal ArticleDOI
07 Apr 2020-JAMA
TL;DR: Hospitalised COVID-19 patients are frequently elderly subjects with co-morbidities receiving polypharmacy, all of which are known risk factors for d
Abstract: Background: Hospitalised COVID-19 patients are frequently elderly subjects with co-morbidities receiving polypharmacy, all of which are known risk factors for d

14,343 citations

Journal ArticleDOI
TL;DR: There is evidence that human-to-human transmission has occurred among close contacts since the middle of December 2019 and considerable efforts to reduce transmission will be required to control outbreaks if similar dynamics apply elsewhere.
Abstract: Background The initial cases of novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We analyzed data on the...

13,101 citations

Journal ArticleDOI
TL;DR: A cohort of asymptomatic patients infected with SARS-CoV-2 had significantly lower levels of virus-specific IgG antibodies compared to a cohort of age- and sex-matched symptomatic infected patients.
Abstract: The clinical features and immune responses of asymptomatic individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have not been well described We studied 37 asymptomatic individuals in the Wanzhou District who were diagnosed with RT-PCR-confirmed SARS-CoV-2 infections but without any relevant clinical symptoms in the preceding 14 d and during hospitalization Asymptomatic individuals were admitted to the government-designated Wanzhou People's Hospital for centralized isolation in accordance with policy1 The median duration of viral shedding in the asymptomatic group was 19 d (interquartile range (IQR), 15-26 d) The asymptomatic group had a significantly longer duration of viral shedding than the symptomatic group (log-rank P = 0028) The virus-specific IgG levels in the asymptomatic group (median S/CO, 34; IQR, 16-107) were significantly lower (P = 0005) relative to the symptomatic group (median S/CO, 205; IQR, 58-382) in the acute phase Of asymptomatic individuals, 933% (28/30) and 811% (30/37) had reduction in IgG and neutralizing antibody levels, respectively, during the early convalescent phase, as compared to 968% (30/31) and 622% (23/37) of symptomatic patients Forty percent of asymptomatic individuals became seronegative and 129% of the symptomatic group became negative for IgG in the early convalescent phase In addition, asymptomatic individuals exhibited lower levels of 18 pro- and anti-inflammatory cytokines These data suggest that asymptomatic individuals had a weaker immune response to SARS-CoV-2 infection The reduction in IgG and neutralizing antibody levels in the early convalescent phase might have implications for immunity strategy and serological surveys

2,463 citations

Related Papers (5)