scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Serratia Infections: from Military Experiments to Current Practice

01 Oct 2011-Clinical Microbiology Reviews (American Society for Microbiology (ASM))-Vol. 24, Iss: 4, pp 755-791
TL;DR: Serratia species appear to be common environmental organisms, and this helps to explain the large number of nosocomial infections due to these bacteria, which increases the danger to hospitalized patients, and hospital personnel should be vigilant in preventing Nosocomial outbreaks due to this organism.
Abstract: Summary: Serratia species, in particular Serratia marcescens, are significant human pathogens. S. marcescens has a long and interesting taxonomic, medical experimentation, military experimentation, and human clinical infection history. The organisms in this genus, particularly S. marcescens, were long thought to be nonpathogenic. Because S. marcescens was thought to be a nonpathogen and is usually red pigmented, the U.S. military conducted experiments that attempted to ascertain the spread of this organism released over large areas. In the process, members of both the public and the military were exposed to S. marcescens, and this was uncovered by the press in the 1970s, leading to U.S. congressional hearings. S. marcescens was found to be a certain human pathogen by the mid-1960s. S. marcescens and S. liquefaciens have been isolated as causative agents of numerous outbreaks and opportunistic infections, and the association of these organisms with point sources such as medical devices and various solutions given to hospitalized patients is striking. Serratia species appear to be common environmental organisms, and this helps to explain the large number of nosocomial infections due to these bacteria. Since many nosocomial infections are caused by multiply antibiotic-resistant strains of S. marcescens, this increases the danger to hospitalized patients, and hospital personnel should be vigilant in preventing nosocomial outbreaks due to this organism. S. marcescens, and probably other species in the genus, carries several antibiotic resistance determinants and is also capable of acquiring resistance genes. S. marcescens and S. liquefaciens are usually identified well in the clinical laboratory, but the other species are rare enough that laboratory technologists may not recognize them. 16S rRNA gene sequencing may enable better identification of some of the less common Serratia species.
Citations
More filters
Journal ArticleDOI
TL;DR: The systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression are presented and the relative role of these systems depending on the pathogen and the tissues they infect is discussed.
Abstract: For all microorganisms, acquisition of metal ions is essential for survival in the environment or in their infected host. Metal ions are required in many biological processes as components of metalloproteins and serve as cofactors or structural elements for enzymes. However, it is critical for bacteria to ensure that metal uptake and availability is in accordance with physiological needs, as an imbalance in bacterial metal homeostasis is deleterious. Indeed, host defense strategies against infection either consist of metal starvation by sequestration or toxicity by the highly concentrated release of metals. To overcome these host strategies, bacteria employ a variety of metal uptake and export systems and finely regulate metal homeostasis by numerous transcriptional regulators, allowing them to adapt to changing environmental conditions. As a consequence, iron, zinc, manganese, and copper uptake systems significantly contribute to the virulence of many pathogenic bacteria. However, during the course of our experiments on the role of iron and manganese transporters in extraintestinal Escherichia coli (ExPEC) virulence, we observed that depending on the strain tested, the importance of tested systems in virulence may be different. This could be due to the different set of systems present in these strains, but literature also suggests that as each pathogen must adapt to the particular microenvironment of its site of infection, the role of each acquisition system in virulence can differ from a particular strain to another. In this review, we present the systems involved in metal transport by Enterobacteria and the main regulators responsible for their controlled expression. We also discuss the relative role of these systems depending on the pathogen and the tissues they infect.

304 citations


Cites background from "Serratia Infections: from Military ..."

  • ...S. marcescens is an opportunistic pathogen causing clinical diseases such as urinary tract infections and pneumonia (Mahlen, 2011)....

    [...]

Journal ArticleDOI
TL;DR: The catalytic mechanisms of these enzymes as well as the structural basis of each enzyme's specific role in the chitin degradation process are discussed, and how knowledge of this enzyme system may be extrapolated to other enzyme systems for conversion of insoluble polysaccharides is discussed.
Abstract: The chitinolytic machinery of Serratia marcescens is one of the best known enzyme systems for the conversion of insoluble polysaccharides This machinery includes four chitin-active enzymes: ChiC, an endo-acting non-processive chitinase; ChiA and ChiB, two processive chitinases moving along chitin chains in opposite directions; and CBP21, a surface-active CBM33-type lytic polysaccharide monooxygenase that introduces chain breaks by oxidative cleavage Furthermore, an N-acetylhexosaminidase or chitobiase converts the oligomeric products from the other enzymes to monomeric N-acetylglucosamine Here we discuss the catalytic mechanisms of these enzymes as well as the structural basis of each enzyme's specific role in the chitin degradation process We also discuss how knowledge of this enzyme system may be extrapolated to other enzyme systems for conversion of insoluble polysaccharides, in particular conversion of cellulose by cellulases and GH61-type lytic polysaccharide monooxygenases

243 citations

Journal ArticleDOI
TL;DR: The mechanisms for PFT-induced necroptosis were explored and it was determined that loss of ion homeostasis at the plasma membrane, mitochondrial damage, ATP depletion, and the generation of reactive oxygen species were together responsible.
Abstract: Necroptosis is a highly pro-inflammatory mode of cell death regulated by RIP (or RIPK)1 and RIP3 kinases and mediated by the effector MLKL. We report that diverse bacterial pathogens that produce a pore-forming toxin (PFT) induce necroptosis of macrophages and this can be blocked for protection against Serratia marcescens hemorrhagic pneumonia. Following challenge with S. marcescens, Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, uropathogenic Escherichia coli (UPEC), and purified recombinant pneumolysin, macrophages pretreated with inhibitors of RIP1, RIP3, and MLKL were protected against death. Alveolar macrophages in MLKL KO mice were also protected during S. marcescens pneumonia. Inhibition of caspases had no impact on macrophage death and caspase-1 and -3/7 were determined to be inactive following challenge despite the detection of IL-1β in supernatants. Bone marrow-derived macrophages from RIP3 KO, but not caspase-1/11 KO or caspase-3 KO mice, were resistant to PFT-induced death. We explored the mechanisms for PFT-induced necroptosis and determined that loss of ion homeostasis at the plasma membrane, mitochondrial damage, ATP depletion, and the generation of reactive oxygen species were together responsible. Treatment of mice with necrostatin-5, an inhibitor of RIP1; GW806742X, an inhibitor of MLKL; and necrostatin-5 along with co-enzyme Q10 (N5/C10), which enhances ATP production; reduced the severity of S. marcescens pneumonia in a mouse intratracheal challenge model. N5/C10 protected alveolar macrophages, reduced bacterial burden, and lessened hemorrhage in the lungs. We conclude that necroptosis is the major cell death pathway evoked by PFTs in macrophages and the necroptosis pathway can be targeted for disease intervention.

183 citations


Cites background from "Serratia Infections: from Military ..."

  • ...marcescens have been reported to be Carbapenem-resistant [17]....

    [...]

  • ...Importantly, some clinical isolates of S.marcescens have been reported to be Carbapenem-resistant [17]....

    [...]

Journal ArticleDOI
TL;DR: The authors' comparative analyses reveal the core genome of S. marcescens and define the potential metabolic capacity, virulence, and multidrug resistance of this species, and show a remarkable intraspecies genetic diversity, both at the sequence level and with regards genome flexibility.
Abstract: Serratia marcescens is an important nosocomial pathogen that can cause an array of infections, most notably of the urinary tract and bloodstream. Naturally, it is found in many environmental niches, and is capable of infecting plants and animals. The emergence and spread of multidrug-resistant strains producing extended-spectrum or metallo beta-lactamases now pose a threat to public health worldwide. Here we report the complete genome sequences of two carefully selected S. marcescens strains, a multidrug-resistant clinical isolate (strain SM39) and an insect isolate (strain Db11). Our comparative analyses reveal the core genome of S. marcescens and define the potential metabolic capacity, virulence, and multidrug resistance of this species. We show a remarkable intraspecies genetic diversity, both at the sequence level and with regards genome flexibility, which may reflect the diversity of niches inhabited by members of this species. A broader analysis with other Serratia species identifies a set of approximately 3,000 genes that characterize the genus. Within this apparent genetic diversity, we identified many genes implicated in the high virulence potential and antibiotic resistance of SM39, including the metallo beta-lactamase and multiple other drug resistance determinants carried on plasmid pSMC1. We further show that pSMC1 is most closely related to plasmids circulating in Pseudomonas species. Our data will provide a valuable basis for future studies on S. marcescens and new insights into the genetic mechanisms that underlie the emergence of pathogens highly resistant to multiple antimicrobial agents.

156 citations

Journal ArticleDOI
TL;DR: This study defines an essential yet flexible role for PAAR proteins in the T6SS and highlights the existence of distinct versions of the machinery with differential effector specificity and efficiency of target cell delivery.
Abstract: The Type VI secretion system (T6SS) is widespread among bacterial pathogens and acts as an effective weapon against competitor bacteria and eukaryotic hosts by delivering toxic effector proteins directly into target cells. The T6SS utilises a bacteriophage-like contractile machinery to expel a puncturing device based on a tube of Hcp topped with a VgrG spike, which can be extended by a final tip from a PAAR domain-containing protein. Effector proteins are believed to be delivered by specifically associating with particular Hcp, VgrG or PAAR proteins, either covalently ('specialised') or non-covalently ('cargo' effectors). Here we used the T6SS of the opportunistic pathogen Serratia marcescens, together with integratecd genetic, proteomic and biochemical approaches, to elucidate the role of specific VgrG and PAAR homologues in T6SS function and effector specificity, revealing new aspects and unexpected subtleties in effector delivery by the T6SS. We identified effectors, both cargo and specialised, absolutely dependent on a particular VgrG for delivery to target cells, and discovered that other cargo effectors can show a preference for a particular VgrG. The presence of at least one PAAR protein was found to be essential for T6SS function, consistent with designation as a 'core' T6SS component. We showed that specific VgrG-PAAR combinations are required to assemble a functional T6SS and that the three distinct VgrG-PAAR assemblies in S. marcescens exhibit distinct effector specificity and efficiency. Unexpectedly, we discovered that two different PAAR-containing Rhs proteins can functionally pair with the same VgrG protein. Showing that accessory EagR proteins are involved in these interactions, native VgrG-Rhs-EagR complexes were isolated and specific interactions between EagR and cognate Rhs proteins identified. This study defines an essential yet flexible role for PAAR proteins in the T6SS and highlights the existence of distinct versions of the machinery with differential effector specificity and efficiency of target cell delivery.

148 citations


Cites background from "Serratia Infections: from Military ..."

  • ...Serratia marcescens is an opportunistic pathogen which can infect diverse organisms and is responsible for many hospital acquired infections [37, 38]....

    [...]

References
More filters
01 Jan 2001
TL;DR: The supplemental information presented in this document is intended for use with the antimicrobial susceptibility testing procedures published in the following Clinical and Laboratory Standards Institute (CLSI)–approved standards.
Abstract: The supplemental information presented in this document is intended for use with the antimicrobial susceptibility testing procedures published in the following Clinical and Laboratory Standards Institute (CLSI)–approved standards: M02-A12—Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Twelfth Edition; M07-A10—Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition; and M11-A8—Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard— Eighth Edition. The standards contain information about both disk (M02) and dilution (M07 and M11) test procedures for aerobic and anaerobic bacteria. Clinicians depend heavily on information from the microbiology laboratory for treatment of their seriously ill patients. The clinical importance of antimicrobial susceptibility test results demands that these tests be performed under optimal conditions and that laboratories have the capability to provide results for the newest antimicrobial agents. The tabular information presented here represents the most current information for drug selection, interpretation, and QC using the procedures standardized in the most current editions of M02, M07, and M11. Users should replace the tables published earlier with these new tables. (Changes in the tables since the previous edition appear in boldface type.) Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 26th ed. CLSI supplement M100S (ISBN 1-56238-923-8 [Print]; ISBN 1-56238924-6 [Electronic]). Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA, 2016. The data in the interpretive tables in this supplement are valid only if the methodologies in M02-A12—Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Twelfth Edition; M07-A10—Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition; and M11-A8—Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard— Eighth Edition are followed.

17,824 citations

Book
01 Jan 1974
TL;DR: A collaborative team of editors and authors from around the world revised the Manual to include the latest applications of genomics and proteomics, producing an authoritative work of two volumes filled with current findings regarding infectious agents, leading-edge diagnostic methods, laboratory practices, and safety guidelines.
Abstract: The 11th edition of the Manual of Clinical Microbiology continues to set the standard for state-of-the-science laboratory practices as the most authoritative reference in the field of clinical microbiology. This new edition presents the numerous microbial taxonomic changes and newer more powerful diagnostic approaches that have been developed since publication of the 10th edition. A collaborative team of editors and authors from around the world, all experienced practitioners, researchers, or public health experts, revised the Manual to include the latest applications of genomics and proteomics, producing an authoritative work of two volumes filled with current findings regarding infectious agents, leading-edge diagnostic methods, laboratory practices, and safety guidelines.

14,522 citations

Journal ArticleDOI
TL;DR: Changing the use of tetracyclines in human and animal health as well as in food production is needed if this class of broad-spectrum antimicrobials through the present century is to continue to be used.
Abstract: Tetracyclines were discovered in the 1940s and exhibited activity against a wide range of microorganisms including gram-positive and gram-negative bacteria, chlamydiae, mycoplasmas, rickettsiae, and protozoan parasites. They are inexpensive antibiotics, which have been used extensively in the prophlylaxis and therapy of human and animal infections and also at subtherapeutic levels in animal feed as growth promoters. The first tetracycline-resistant bacterium, Shigella dysenteriae, was isolated in 1953. Tetracycline resistance now occurs in an increasing number of pathogenic, opportunistic, and commensal bacteria. The presence of tetracycline-resistant pathogens limits the use of these agents in treatment of disease. Tetracycline resistance is often due to the acquisition of new genes, which code for energy-dependent efflux of tetracyclines or for a protein that protects bacterial ribosomes from the action of tetracyclines. Many of these genes are associated with mobile plasmids or transposons and can be distinguished from each other using molecular methods including DNA-DNA hybridization with oligonucleotide probes and DNA sequencing. A limited number of bacteria acquire resistance by mutations, which alter the permeability of the outer membrane porins and/or lipopolysaccharides in the outer membrane, change the regulation of innate efflux systems, or alter the 16S rRNA. New tetracycline derivatives are being examined, although their role in treatment is not clear. Changing the use of tetracyclines in human and animal health as well as in food production is needed if we are to continue to use this class of broad-spectrum antimicrobials through the present century.

3,647 citations


"Serratia Infections: from Military ..." refers background in this paper

  • ...Tetracycline and minocycline are substrates for TetB, but the other pumps primarily transport tetracycline (73)....

    [...]

Journal ArticleDOI
TL;DR: Extended-spectrum β-lactamases represent an impressive example of the ability of gram-negative bacteria to develop new antibiotic resistance mechanisms in the face of the introduction of new antimicrobial agents.
Abstract: Extended-spectrum β-lactamases (ESBLs) are a rapidly evolving group of β-lactamases which share the ability to hydrolyze third-generation cephalosporins and aztreonam yet are inhibited by clavulanic acid. Typically, they derive from genes for TEM-1, TEM-2, or SHV-1 by mutations that alter the amino acid configuration around the active site of these β-lactamases. This extends the spectrum of β-lactam antibiotics susceptible to hydrolysis by these enzymes. An increasing number of ESBLs not of TEM or SHV lineage have recently been described. The presence of ESBLs carries tremendous clinical significance. The ESBLs are frequently plasmid encoded. Plasmids responsible for ESBL production frequently carry genes encoding resistance to other drug classes (for example, aminoglycosides). Therefore, antibiotic options in the treatment of ESBL-producing organisms are extremely limited. Carbapenems are the treatment of choice for serious infections due to ESBL-producing organisms, yet carbapenem-resistant isolates have recently been reported. ESBL-producing organisms may appear susceptible to some extended-spectrum cephalosporins. However, treatment with such antibiotics has been associated with high failure rates. There is substantial debate as to the optimal method to prevent this occurrence. It has been proposed that cephalosporin breakpoints for the Enterobacteriaceae should be altered so that the need for ESBL detection would be obviated. At present, however, organizations such as the Clinical and Laboratory Standards Institute (formerly the National Committee for Clinical Laboratory Standards) provide guidelines for the detection of ESBLs in klebsiellae and Escherichia coli. In common to all ESBL detection methods is the general principle that the activity of extended-spectrum cephalosporins against ESBL-producing organisms will be enhanced by the presence of clavulanic acid. ESBLs represent an impressive example of the ability of gram-negative bacteria to develop new antibiotic resistance mechanisms in the face of the introduction of new antimicrobial agents.

3,308 citations


"Serratia Infections: from Military ..." refers background in this paper

  • ...S. marcescens strains most commonly carry CTX-M-type ESBLs (69, 196, 218, 273, 284, 293, 295, 414, 421) but have also been found carrying SHV (218, 281, 284, 295), TEM (218, 284, 295), and a novel ESBL, BES-1 (42)....

    [...]

  • ...A survey of S. marcescens isolates from 2006 to 2009 in Mexico revealed that 20.5% were ESBL producers, and all of the ESBLs were SHV-type enzymes (143)....

    [...]

  • ...In a study from Thailand, 24.1% of S. marcescens isolates recovered from 2006 to 2007 were ESBL producers; the isolates carried mixtures of CTX-M-, SHV-, and TEM-type enzymes (218)....

    [...]

  • ...%) carried CTX-M-type enzymes, while the rest produced SHV-type ESBLs....

    [...]

  • ...The ESBLs are plasmid-mediated enzymes that have activity against the narrow-, expanded-, and broad-spectrum cephalosporins, the penicillins, and aztreonam (300)....

    [...]