scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sex is a defining feature of neuroimaging phenotypes in major brain disorders.

TL;DR: In this article, a review of the existing literature on sex differences in adult brain structure in normative samples and in 14 distinct psychiatric and neurological disorders is presented, highlighting the importance of large-scale neuroimaging initiatives such as the Enhancing NeuroImaging Genetics through Meta-Analyses consortium, the UK Biobank, Human Connectome Project, and others.
Abstract: Sex is a biological variable that contributes to individual variability in brain structure and behavior. Neuroimaging studies of population-based samples have identified normative differences in brain structure between males and females, many of which are exacerbated in psychiatric and neurological conditions. Still, sex differences in MRI outcomes are understudied, particularly in clinical samples with known sex differences in disease risk, prevalence, and expression of clinical symptoms. Here we review the existing literature on sex differences in adult brain structure in normative samples and in 14 distinct psychiatric and neurological disorders. We discuss commonalities and sources of variance in study designs, analysis procedures, disease subtype effects, and the impact of these factors on MRI interpretation. Lastly, we identify key problems in the neuroimaging literature on sex differences and offer potential recommendations to address current barriers and optimize rigor and reproducibility. In particular, we emphasize the importance of large-scale neuroimaging initiatives such as the Enhancing NeuroImaging Genetics through Meta-Analyses consortium, the UK Biobank, Human Connectome Project, and others to provide unprecedented power to evaluate sex-specific phenotypes in major brain diseases.
Citations
More filters
Journal ArticleDOI
TL;DR: Sex effect in brain and cognition is already evident in de novo Parkinson's disease not explained by age per se, being a relevant factor to consider in clinical and translational research in PD.
Abstract: Background and Objective: Brain atrophy and cognitive impairment in neurodegenerative diseases are influenced by sex. We aimed to investigate sex differences in brain atrophy and cognition in de novo Parkinson's disease (PD) patients. Methods: Clinical, neuropsychological and T1-weighted MRI data from 205 PD patients (127 males: 78 females) and 69 healthy controls (40 males: 29 females) were obtained from the PPMI dataset. Results: PD males had a greater motor and rapid eye movement sleep behavior disorder symptomatology than PD females. They also showed cortical thinning in postcentral and precentral regions, greater global cortical and subcortical atrophy and smaller volumes in thalamus, caudate, putamen, pallidum, hippocampus, and brainstem, compared with PD females. Healthy controls only showed reduced hippocampal volume in males compared to females. PD males performed worse than PD females in global cognition, immediate verbal recall, and mental processing speed. In both groups males performed worse than females in semantic verbal fluency and delayed verbal recall; as well as females performed worse than males in visuospatial function. Conclusions: Sex effect in brain and cognition is already evident in de novo PD not explained by age per se, being a relevant factor to consider in clinical and translational research in PD.

13 citations

Journal ArticleDOI
TL;DR: The 10-year anniversary of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium was celebrated in this article, where the EnIGMA Consortium developed methods to analyze worldwide data from anatomical and diffusion magnetic resonance imaging (MRI), resting state and task-based functional MRI, electroencephalography (EEG), magnetoencephalograph (MEG), and magnetic resonance spectroscopy (MRS).
Abstract: This Special Issue of Human Brain Mapping is dedicated to a 10-year anniversary of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium. It reports updates from a broad range of international neuroimaging projects that pool data from around the world to answer fundamental questions in neuroscience. Since ENIGMA was formed in December 2009, the initiative grew into a worldwide effort with over 2,000 participating scientists from 45 countries, and over 50 working groups leading large-scale studies of human brain disorders. Over the last decade, many lessons were learned on how best to pool brain data from diverse sources. Working groups were created to develop methods to analyze worldwide data from anatomical and diffusion magnetic resonance imaging (MRI), resting state and task-based functional MRI, electroencephalography (EEG), magnetoencephalography (MEG), and magnetic resonance spectroscopy (MRS). The quest to understand genetic effects on human brain development and disease also led to analyses of brain scans on an unprecedented scale. Genetic roadmaps of the human cortex were created by researchers worldwide who collaborated to perform statistically well-powered analyses of common and rare genetic variants on brain measures and rates of brain development and aging. Here, we summarize the 31 papers in this Special Issue, covering: (a) technical approaches to harmonize analysis of different types of brain imaging data, (b) reviews of the last decade of work by several of ENIGMA's clinical and technical working groups, and (c) new empirical papers reporting large-scale international brain mapping analyses in patients with substance use disorders, schizophrenia, bipolar disorders, major depression, posttraumatic stress disorder, obsessive compulsive disorder, epilepsy, and stroke.

9 citations

Journal ArticleDOI
TL;DR: R rigorously characterized sex differences in white matter microstructure among over 6000 children from the Adolescent Brain Cognitive Development study who were between 9 and 10 years old and found significant and replicablesex differences in DTI or RSI microst structure metrics in every white matter region examined across the brain.
Abstract: Sex differences in white matter microstructure have been robustly demonstrated in the adult brain using both conventional and advanced diffusion‐weighted magnetic resonance imaging approaches. However, sex differences in white matter microstructure prior to adulthood remain poorly understood; previous developmental work focused on conventional microstructure metrics and yielded mixed results. Here, we rigorously characterized sex differences in white matter microstructure among over 6000 children from the Adolescent Brain Cognitive Development study who were between 9 and 10 years old. Microstructure was quantified using both the conventional model—diffusion tensor imaging (DTI)—and an advanced model, restriction spectrum imaging (RSI). DTI metrics included fractional anisotropy (FA) and mean, axial, and radial diffusivity (MD, AD, RD). RSI metrics included normalized isotropic, directional, and total intracellular diffusion (N0, ND, NT). We found significant and replicable sex differences in DTI or RSI microstructure metrics in every white matter region examined across the brain. Sex differences in FA were regionally specific. Across white matter regions, boys exhibited greater MD, AD, and RD than girls, on average. Girls displayed increased N0, ND, and NT compared to boys, on average, suggesting greater cell and neurite density in girls. Together, these robust and replicable findings provide an important foundation for understanding sex differences in health and disease.

6 citations

Book ChapterDOI
TL;DR: In this paper , it has been shown that the various proteinopathies that are the cause of the dementia begin to build up long before the appearance of any obvious symptoms and there is an urgency in diagnosis as it occurs very late in the pathophysiology of these diseases.
Abstract: The dementia landscape has undergone a striking paradigm shift. The advances in understanding of neurodegeneration and proteinopathies has changed our approach to patients with cognitive impairment. Firstly, it has recently been shown that the various proteinopathies that are the cause of the dementia begin to build up long before the appearance of any obvious symptoms. This has cemented the idea that there is an urgency in diagnosis as it occurs very late in the pathophysiology of these diseases. Secondly, that accurate diagnosis is required to deliver targeted therapies, that is precision medicine. With this latter point, the realization that various factors of a person need to be considered as they may impact the presentation and progression of disease has risen to the forefront. Two of these factors aside from race and age are biological sex and gender (social construct), as both can have tremendous impact on manifestation of disease. This chapter will cover what is known and remains to be known on the interaction of sex and gender with some of the major causes of dementia.

3 citations

Posted ContentDOI
19 Aug 2021-bioRxiv
TL;DR: Robust and replicable sex differences in white matter microstructure are found among over 6,000 children from the Adolescent Brain Cognitive Development (ABCD) Study who were between 9 and 10 years old, suggesting greater cell and neurite density in girls.
Abstract: Sex differences in white matter microstructure have been robustly demonstrated in the adult brain using both conventional and advanced diffusion-weighted magnetic resonance imaging (dMRI) approaches. However, the effect of sex on white matter microstructure prior to adulthood remains poorly understood, with previous developmental work focusing on conventional microstructure metrics and yielding mixed results. Here we thoroughly and rigorously characterized sex differences in white matter microstructure among over 6,000 children from the Adolescent Brain Cognitive Development (ABCD) Study who were between 9 and 10 years old. Microstructure was quantified using both the conventional model - diffusion tensor imaging (DTI) - and an advanced model, restriction spectrum imaging (RSI). DTI metrics included fractional anisotropy (FA) and mean, axial, and radial diffusivity (MD, AD, RD). RSI metrics included normalized isotropic, directional, and total intracellular diffusion (N0, ND, NT). We found significant and replicable sex differences in DTI or RSI microstructure metrics in every white matter region examined across the brain. The impact of sex on FA was regionally specific. Across white matter regions, boys exhibited greater MD, AD, and RD than girls, on average. Girls displayed increased N0, ND, and NT compared to boys, on average, suggesting greater cell and neurite density in girls. Together, these robust and replicable findings provide an important foundation for understanding sex differences in health and disease.

1 citations

References
More filters
Journal ArticleDOI
TL;DR: The investigation showed that recognition of the six stages required qualitative evaluation of only a few key preparations, permitting the differentiation of six stages.
Abstract: Eighty-three brains obtained at autopsy from nondemented and demented individuals were examined for extracellular amyloid deposits and intraneuronal neurofibrillary changes. The distribution pattern and packing density of amyloid deposits turned out to be of limited significance for differentiation of neuropathological stages. Neurofibrillary changes occurred in the form of neuritic plaques, neurofibrillary tangles and neuropil threads. The distribution of neuritic plaques varied widely not only within architectonic units but also from one individual to another. Neurofibrillary tangles and neuropil threads, in contrast, exhibited a characteristic distribution pattern permitting the differentiation of six stages. The first two stages were characterized by an either mild or severe alteration of the transentorhinal layer Pre-alpha (transentorhinal stages I-II). The two forms of limbic stages (stages III-IV) were marked by a conspicuous affection of layer Pre-alpha in both transentorhinal region and proper entorhinal cortex. In addition, there was mild involvement of the first Ammon's horn sector. The hallmark of the two isocortical stages (stages V-VI) was the destruction of virtually all isocortical association areas. The investigation showed that recognition of the six stages required qualitative evaluation of only a few key preparations.

13,699 citations

Journal ArticleDOI
TL;DR: Although mental disorders are widespread, serious cases are concentrated among a relatively small proportion of cases with high comorbidity, as shown in the recently completed US National Comorbidities Survey Replication.
Abstract: Background Little is known about the general population prevalence or severity of DSM-IV mental disorders. Objective To estimate 12-month prevalence, severity, and comorbidity of DSM-IV anxiety, mood, impulse control, and substance disorders in the recently completed US National Comorbidity Survey Replication. Design and Setting Nationally representative face-to-face household survey conducted between February 2001 and April 2003 using a fully structured diagnostic interview, the World Health Organization World Mental Health Survey Initiative version of the Composite International Diagnostic Interview. Participants Nine thousand two hundred eighty-two English-speaking respondents 18 years and older. Main Outcome Measures Twelve-month DSM-IV disorders. Results Twelve-month prevalence estimates were anxiety, 18.1%; mood, 9.5%; impulse control, 8.9%; substance, 3.8%; and any disorder, 26.2%. Of 12-month cases, 22.3% were classified as serious; 37.3%, moderate; and 40.4%, mild. Fifty-five percent carried only a single diagnosis; 22%, 2 diagnoses; and 23%, 3 or more diagnoses. Latent class analysis detected 7 multivariate disorder classes, including 3 highly comorbid classes representing 7% of the population. Conclusion Although mental disorders are widespread, serious cases are concentrated among a relatively small proportion of cases with high comorbidity.

10,951 citations

Journal ArticleDOI
TL;DR: This article reviews studies investigating complex brain networks in diverse experimental modalities and provides an accessible introduction to the basic principles of graph theory and highlights the technical challenges and key questions to be addressed by future developments in this rapidly moving field.
Abstract: Recent developments in the quantitative analysis of complex networks, based largely on graph theory, have been rapidly translated to studies of brain network organization. The brain's structural and functional systems have features of complex networks--such as small-world topology, highly connected hubs and modularity--both at the whole-brain scale of human neuroimaging and at a cellular scale in non-human animals. In this article, we review studies investigating complex brain networks in diverse experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans) and provide an accessible introduction to the basic principles of graph theory. We also highlight some of the technical challenges and key questions to be addressed by future developments in this rapidly moving field.

9,700 citations

Journal ArticleDOI
TL;DR: All-cause age-standardised YLD rates decreased by 3·9% from 1990 to 2017; however, the all-age YLD rate increased by 7·2% while the total sum of global YLDs increased from 562 million (421–723) to 853 million (642–1100).

7,419 citations

Journal ArticleDOI
TL;DR: WRITING GROUP MEMBERS Emelia J. Benjamin, MD, SCM, FAHA Michael J. Reeves, PhD Matthew Ritchey, PT, DPT, OCS, MPH Carlos J. Jiménez, ScD, SM Lori Chaffin Jordan,MD, PhD Suzanne E. Judd, PhD
Abstract: WRITING GROUP MEMBERS Emelia J. Benjamin, MD, SCM, FAHA Michael J. Blaha, MD, MPH Stephanie E. Chiuve, ScD Mary Cushman, MD, MSc, FAHA Sandeep R. Das, MD, MPH, FAHA Rajat Deo, MD, MTR Sarah D. de Ferranti, MD, MPH James Floyd, MD, MS Myriam Fornage, PhD, FAHA Cathleen Gillespie, MS Carmen R. Isasi, MD, PhD, FAHA Monik C. Jiménez, ScD, SM Lori Chaffin Jordan, MD, PhD Suzanne E. Judd, PhD Daniel Lackland, DrPH, FAHA Judith H. Lichtman, PhD, MPH, FAHA Lynda Lisabeth, PhD, MPH, FAHA Simin Liu, MD, ScD, FAHA Chris T. Longenecker, MD Rachel H. Mackey, PhD, MPH, FAHA Kunihiro Matsushita, MD, PhD, FAHA Dariush Mozaffarian, MD, DrPH, FAHA Michael E. Mussolino, PhD, FAHA Khurram Nasir, MD, MPH, FAHA Robert W. Neumar, MD, PhD, FAHA Latha Palaniappan, MD, MS, FAHA Dilip K. Pandey, MBBS, MS, PhD, FAHA Ravi R. Thiagarajan, MD, MPH Mathew J. Reeves, PhD Matthew Ritchey, PT, DPT, OCS, MPH Carlos J. Rodriguez, MD, MPH, FAHA Gregory A. Roth, MD, MPH Wayne D. Rosamond, PhD, FAHA Comilla Sasson, MD, PhD, FAHA Amytis Towfighi, MD Connie W. Tsao, MD, MPH Melanie B. Turner, MPH Salim S. Virani, MD, PhD, FAHA Jenifer H. Voeks, PhD Joshua Z. Willey, MD, MS John T. Wilkins, MD Jason HY. Wu, MSc, PhD, FAHA Heather M. Alger, PhD Sally S. Wong, PhD, RD, CDN, FAHA Paul Muntner, PhD, MHSc On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee Heart Disease and Stroke Statistics—2017 Update

7,190 citations

Trending Questions (1)
What are sex differences in the brain?

The paper discusses sex differences in brain structure and behavior, particularly in psychiatric and neurological disorders. It emphasizes the need for further research and large-scale initiatives to evaluate sex-specific phenotypes in major brain diseases.