scispace - formally typeset
Search or ask a question

SF2A-2013: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics

About: The article was published on 2013-11-01 and is currently open access. It has received 230 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors presented the detection of Lyman continuum (LyC) radiation of four other compact star-forming galaxies observed with the Cosmic Origins Spectrograph (COS) onboard the HST.
Abstract: Following our first detection reported in Izotov et al. (2016), we present the detection of Lyman continuum (LyC) radiation of four other compact star-forming galaxies observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST). These galaxies, at redshifts of z~0.3, are characterized by high emission-line flux ratios [OIII]5007/[OII]3727 > 5. The escape fractions of the LyC radiation fesc(LyC) in these galaxies are in the range of ~6%-13%, the highest values found so far in low-redshift star-forming galaxies. Narrow double-peaked Lyalpha emission lines are detected in the spectra of all four galaxies, compatible with predictions for Lyman continuum leakers. We find escape fractions of Lyalpha, fesc(Lyalpha) ~20%-40%, among the highest known for Lyalpha emitters (LAEs). Surface brightness profiles produced from the COS acquisition images reveal bright star-forming regions in the center and exponential discs in the outskirts with disc scale lengths alpha in the range ~0.6-1.4 kpc. Our galaxies are characterized by low metallicity, ~1/8-1/5 solar, low stellar mass ~(0.2 - 4)e9 Msun, high star formation rates SFR~14-36 Msun/yr, and high SFR densities Sigma~2-35 Msun/yr/kpc^2. These properties are comparable to those of high-redshift star-forming galaxies. Finally, our observations, combined with our first detection reported in Izotov et al. (2016), reveal that a selection for compact star-forming galaxies showing high [OIII]5007/[OII]3727 ratios appears to pick up very efficiently sources with escaping Lyman continuum radiation: all five of our selected galaxies are LyC leakers.

315 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the detailed physics of the feedback mechanism by relativistic AGN jets interacting with a two-phase fractal interstellar medium in the kpc-scale core of galaxies using 29 3D grid-based hydrodynamical simulations.
Abstract: We examine the detailed physics of the feedback mechanism by relativistic AGN jets interacting with a two-phase fractal interstellar medium in the kpc-scale core of galaxies using 29 3D grid-based hydrodynamical simulations. The feedback efficiency, as measured by the amount of cloud-dispersal generated by the jet-ISM interactions, is sensitive to the maximum size of clouds in the fractal cloud distribution but not to their volume filling factor. Feedback ceases to be efficient for Eddington ratios P_jet/L_edd<10^-4, although systems with large cloud complexes ~50 pc require jets of Eddington ratio in excess of 10^-2 to disperse the clouds appreciably. Based on measurements of the bubble expansion rates in our simulations we argue that sub-grid AGN prescriptions resulting in negative feedback in cosmological simulations without a multi-phase treatment of the ISM are good approximations if the volume filling factor of warm phase material is less than 0.1 and the cloud complexes are smaller than ~25 pc. We find that the acceleration of the dense embedded clouds is provided by the ram pressure of the high velocity flow through the porous channels of the warm phase, flow that has fully entrained the shocked hot-phase gas it has swept up, and is additionally mass-loaded by ablated cloud material. This mechanism transfers 10% to 40% of the jet energy to the cold and warm gas, accelerating it within 10 to 100 Myr to velocities that match those observed in a range of high and low redshift radio galaxies hosting powerful radio jets.

249 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe empirical calibrations of stellar parameters presented in the first SDSS-III APOGEE data release (DR10), enabled by observations of 559 stars in 20 globular and open clusters.
Abstract: The Sloan Digital Sky Survey III (SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a three-year survey that is collecting 105 high-resolution spectra in the near-IR across multiple Galactic populations. To derive stellar parameters and chemical compositions from this massive data set, the APOGEE Stellar Parameters and Chemical Abundances Pipeline (ASPCAP) has been developed. Here, we describe empirical calibrations of stellar parameters presented in the first SDSS-III APOGEE data release (DR10). These calibrations were enabled by observations of 559 stars in 20 globular and open clusters. The cluster observations were supplemented by observations of stars in NASA's Kepler field that have well determined surface gravities from asteroseismic analysis. We discuss the accuracy and precision of the derived stellar parameters, considering especially effective temperature, surface gravity, and metallicity; we also briefly discuss the derived results for the abundances of the α-elements, carbon, and nitrogen. Overall, we find that ASPCAP achieves reasonably accurate results for temperature and metallicity, but suffers from systematic errors in surface gravity. We derive calibration relations that bring the raw ASPCAP results into better agreement with independently determined stellar parameters. The internal scatter of ASPCAP parameters within clusters suggests that metallicities are measured with a precision better than 0.1 dex, effective temperatures better than 150 K, and surface gravities better than 0.2 dex. The understanding provided by the clusters and Kepler giants on the current accuracy and precision will be invaluable for future improvements of the pipeline.

184 citations

Journal ArticleDOI
TL;DR: The giant radio array for neutrino detection (GRAND) is a planned large-scale observatory of ultra-high-energy (UHE) cosmic particles, with energies exceeding 108 GeV as mentioned in this paper.
Abstract: The Giant Radio Array for Neutrino Detection (GRAND) is a planned large-scale observatory of ultra-high-energy (UHE) cosmic particles, with energies exceeding 108 GeV. Its goal is to solve the long-standing mystery of the origin of UHE cosmic rays. To do this, GRAND will detect an unprecedented number of UHE cosmic rays and search for the undiscovered UHE neutrinos and gamma rays associated to them with unmatched sensitivity. GRAND will use large arrays of antennas to detect the radio emission coming from extensive air showers initiated by UHE particles in the atmosphere. Its design is modular: 20 separate, independent sub-arrays, each of 10000 radio antennas deployed over 10000 km2. A staged construction plan will validate key detection techniques while achieving important science goals early. Here we present the science goals, detection strategy, preliminary design, performance goals, and construction plans for GRAND.

168 citations

Journal ArticleDOI
TL;DR: The giant radio array for neutrino detection (GRAND) is a planned large-scale observatory of ultra-high-energy (UHE) cosmic particles, with energies exceeding 10^8 GeV.
Abstract: The Giant Radio Array for Neutrino Detection (GRAND) is a planned large-scale observatory of ultra-high-energy (UHE) cosmic particles, with energies exceeding 10^8 GeV. Its goal is to solve the long-standing mystery of the origin of UHE cosmic rays. To do this, GRAND will detect an unprecedented number of UHE cosmic rays and search for the undiscovered UHE neutrinos and gamma rays associated to them with unmatched sensitivity. GRAND will use large arrays of antennas to detect the radio emission coming from extensive air showers initiated by UHE particles in the atmosphere. Its design is modular: 20 separate, independent sub-arrays, each of 10 000 radio antennas deployed over 10 000 km^2. A staged construction plan will validate key detection techniques while achieving important science goals early. Here we present the science goals, detection strategy, preliminary design, performance goals, and construction plans for GRAND.

156 citations