scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Shelf-Life Extension of Large Yellow Croaker (Larimichthys crocea) Using Active Coatings Containing Lemon Verbena (Lippa citriodora Kunth.) Essential Oil.

01 Jan 2021-Frontiers in Nutrition (Front Nutr)-Vol. 8, pp 678643
TL;DR: In this paper, the effect of locust bean gum (LBG) and sodium alginate (SA) active coatings containing lemon verbena (Lippa citriodora Kunth.) essential oil (LVEO) emulsions on microbiological, physicochemical and organoleptic evaluation of large yellow croaker (Larimichthys crocea) samples during refrigerated storage at 4°C.
Abstract: Active coating could improve the fish quality and extend the shelf life. This study investigates the effect of locust bean gum (LBG) and sodium alginate (SA) active coatings containing lemon verbena (Lippa citriodora Kunth.) essential oil (LVEO) emulsions on microbiological, physicochemical and organoleptic evaluation of large yellow croaker (Larimichthys crocea) samples during refrigerated storage at 4°C. Results showed that LBG-SA coatings incorporated with 0.30 or 0.60% LVEO emulsions significantly inhibited the growth of mesophile bacteria, Pseudomonas spp., H2S-producing bacteria, lactic acid bacteria (LAB) and psychrophilic bacteria, and reduce the productions of trimethylamine (TMA), total volatile basic nitrogen (TVB-N) and ATP-related compounds. Further, the LVEO treatments also retarded the water migration and maintained the organoleptic evaluation results of large yellow croaker during storage at 4°C. In conclusion, the LBG-SA active coatings incorporated with LVEO emulsions maintained the quality and extended the shelf life of large yellow croaker during refrigerated storage.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors described the quality and microbial influence on ozone water and ultra-high pressure (UHP) processing alone or in combination with refrigerated catfish fillets.
Abstract: This study described the quality and microbial influence on ozone water (OW) and ultra-high pressure (UHP) processing alone or in combination with refrigerated catfish fillets. The analysis parameters included total volatile base nitrogen (TVBN), thiobarbituric acid reactive substances (TBARs), chromaticity, microbial enumeration, 16S rRNA gene sequencing, electronic nose (E-nose), and sensory score. The study found that compared with the control (CK), ozone water combined with ultra-high pressure (OCU) delayed the accumulation of TVBN and TBARs. The results of sensory evaluation illustrated that OCU obtained a satisfactory overall sensory acceptability. The counting results suggested that compared to CK, OCU significantly (p < 0.05) delayed the stack of TVC, Enterobacteriaceae, Pseudomonas, lactic acid bacteria (LAB), and hydrogen sulfide-producing bacteria (HSPB) during the storage of catfish fillets. The sequencing results reflected that the dominant were Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria at the phylum level, and the dominant were Acinetobacter, Pseudomonas, Lelliottia, Serratia, Shewanella, Yersinia, and Aeromonas at the genus level. The dominant was Acinetobacter in initial storage, while Pseudomonas and Shewanella were in anaphase storage. Based on the TVC and TVBN, the shelf life of catfish fillets was extended by at least 3 days compared to the control. In short, the combination of ozone water and ultra-high-pressure processing is a favorable strategy to control microbial quality and delay lipid oxidation during catfish storage.

2 citations

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the influence of multi-frequency ultrasound assisted immersion freezing (UIF) on the freezing speed, quality attributes, and microstructure of cultured large yellow croaker ( Larimichthys croce a) with different ultrasound powers.
Abstract: The purpose of this work was to investigate the influence of multi-frequency ultrasound-assisted immersion freezing (UIF) on the freezing speed, quality attributes, and microstructure of cultured large yellow croaker ( Larimichthys croce a) with different ultrasound powers. The findings revealed that UIF under multi-frequency conditions greatly enhanced the speed of food freezing. The multi-frequency UIF reduced the thawing and cooking losses, total volatile base nitrogen, K -values, and thiobarbituric acid reactive substances values, and increased the water holding capacity. The microstructure observation showed that multi-frequency UIF at 175 W reduced pore diameter and ice crystal size. Free amino acids analysis revealed that the application of multi-frequency UIF reduced the accumulation of bitter amino acids, and UIF-175 treatment increased the accumulation of umami amino acids. Therefore, multi-frequency UIF at a suitable ultrasonic power can remarkably improve the quality of large yellow croaker.

1 citations

Journal ArticleDOI
TL;DR: In this article , the authors present the most recent achievements in the application of non-targeted metabolomics to identify and quantify the overall metabolite profile associated with food quality, which can guide the development of emerging food preservation technologies.
Abstract: Growing consumer concern about foodborne disease outbreaks and health risks associated with chemical additives has propelled the usage of essential oils (EOs) as novel food additives, but are limited by instability. In this regard, a series of EOs nano/micro-capsules have been widely used to enhance their stability and improve food quality. However, classical food quality assessment methods are insufficient to fully characterize the effects of encapsulated EOs on food properties, including physical, biochemical, organoleptic, and microbial changes. Recently, the rapid development of high-throughput sequencing is accelerating the application of metabolomics in food safety and quality analysis. This review seeks to present the most recent achievements in the application of non-targeted metabolomics to identify and quantify the overall metabolite profile associated with food quality, which can guide the development of emerging food preservation technologies. The scientific findings confirm that metabolomics opens up exciting prospects for biomarker screening in food preservation and contributes to an in-depth understanding of the mechanisms of action (MoA) of EOs. Future research should focus on constructing food quality assessment criteria based on multi-omics technologies, which will drive the standardization and commercialization of EOs for food industry applications.
Journal ArticleDOI
TL;DR: In this article , the destructive effect and mode of action of lemon verbena essential oil on cells were investigated, taking the isolated Pseudosciaena D4 as the research object.
Abstract: The destructive effect and mode of action of lemon verbena essential oil on cells were investigated, taking the isolated Pseudosciaena D4 as the research object. The extracellular absorbance of the Pseudosciaena D4 increased at OD260 and OD280 after being treated with lemon verbena essential oil, which destroyed the integrity of Pseudosciaena D4 cells, showing a significant effect on preventing biomembrane formation and destroying the formed biomembrane. With an increased concentration of lemon verbena essential oil, extracellular polysaccharide showed a significant decrease in content and a significant increase in inhibition rate, indicating that the secretion of extracellular polysaccharide by Pseudosciaena D4 cells could be inhibited by lemon verbena essential oil during the process of biomembrane formation. Cell introcession and shrinkage appeared after the treatment with essential oil, and a transparent cavity was formed by the out-flowed cell content. Lemon verbena essential oil destroyed the cell wall, resulting in an enhanced permeability of the cell membrane and leakage of the contents, thereby causing cell death.
References
More filters
Journal ArticleDOI
TL;DR: Bacteria grew most quickly in trout fillets stored in air, followed by those wrapped with Q SMF and the lowest counts were in wrapped samples with QSMF+2%T, while GC analysis of essential oil components revealed that carvacrol was the major component of oregano essential oil.

195 citations

Journal ArticleDOI
TL;DR: Essential oils improve the shelf-life of packaged products, control the microbial growth, and unriddle the consumer concerns regarding the use of chemical preservatives.
Abstract: Food-borne illnesses pose a real scourge in the present scenario as the consumerism of packaged food has increased to a great extend. Pathogens entering the packaged foods may survive longer, which needs a check. Antimicrobial agents either alone or in combination are added to the food or packaging materials for this purpose. Exploiting the antimicrobial property, essential oils are considered as a "natural" remedy to this problem other than its flavoring property instead of using synthetic agents. The essential oils are well known for its antibacterial, antiviral, antimycotic, antiparasitic, and antioxidant properties due to the presence of phenolic functional group. Gram-positive organisms are found more susceptible to the action of the essential oils. Essential oils improve the shelf-life of packaged products, control the microbial growth, and unriddle the consumer concerns regarding the use of chemical preservatives. This review is intended to provide an overview of the essential oils and their role as natural antimicrobial agents in the food industry.

165 citations

Journal ArticleDOI
TL;DR: This paper is uniquely worked upon to review the different literature which brought all the discussions from the past including the recent innovations in assessing the freshness of different fishes with the help of various indicators as well as a complete study of spoilage and toxicity mechanism leading to deterioration in quality.

151 citations

Journal ArticleDOI
13 Oct 2019-Foods
TL;DR: Natural preservatives from microorganisms, plants, and animals have been shown potential in replacing the chemical antimicrobials in fish storage and bacteriocins and organic acids from bacteria showed good antimicrobial activities against spoilage bacteria.
Abstract: Fish is extremely perishable as a result of rapid microbial growth naturally present in fish or from contamination. Synthetic preservatives are widely used in fish storage to extend shelf life and maintain quality and safety. However, consumer preferences for natural preservatives and concerns about the safety of synthetic preservatives have prompted the food industry to search natural preservatives. Natural preservatives from microorganisms, plants, and animals have been shown potential in replacing the chemical antimicrobials. Bacteriocins and organic acids from bacteria showed good antimicrobial activities against spoilage bacteria. Plant-derived antimicrobials could prolong fish shelf life and decrease lipid oxidation. Animal-derived antimicrobials also have good antimicrobial activities; however, their allergen risk should be paid attention. Moreover, some algae and mushroom species can also provide a potential source of new natural preservatives. Obviously, the natural preservatives could perform better in fish storage by combining with other hurdles such as non-thermal sterilization processing, modified atmosphere packaging, edible films and coatings.

137 citations

Journal ArticleDOI
TL;DR: Fish gelatin coating enriched with CUR/βCD emulsion can be used as an effective way to maintain the quality of GCF and extend its shelf life during storage at 4 °C.

130 citations

Related Papers (5)