scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Shock Waves on the Highway

01 Feb 1956-Operations Research (INFORMS)-Vol. 4, Iss: 1, pp 42-51
TL;DR: In this article, a simple theory of traffic flow is developed by replacing individual vehicles with a continuous fluid density and applying an empirical relation between speed and density, which is a simple graph-shearing process for following the development of traffic waves.
Abstract: A simple theory of traffic flow is developed by replacing individual vehicles with a continuous “fluid” density and applying an empirical relation between speed and density. Characteristic features of the resulting theory are a simple “graph-shearing” process for following the development of traffic waves in time and the frequent appearance of shock waves. The effect of a traffic signal on traffic streams is studied and found to exhibit a threshold effect wherein the disturbances are minor for light traffic but suddenly build to large values when a critical density is exceeded.
Citations
More filters
Journal ArticleDOI
TL;DR: This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic, including microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models.
Abstract: Since the subject of traffic dynamics has captured the interest of physicists, many surprising effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by ``phantom traffic jams'' even though drivers all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction in the volume of traffic cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize into lanes, while similar systems ``freeze by heating''? All of these questions have been answered by applying and extending methods from statistical physics and nonlinear dynamics to self-driven many-particle systems. This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic. These include microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts, such as a general modeling framework for self-driven many-particle systems, including spin systems. While the primary focus is upon vehicle and pedestrian traffic, applications to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are touched upon as well.

3,117 citations

Journal ArticleDOI
TL;DR: In this paper, a simple representation of traffic on a highway with a single entrance and exit is presented, which can be used to predict traffic's evolution over time and space, including transient phenomena such as the building, propagation, and dissipation of queues.
Abstract: This paper presents a simple representation of traffic on a highway with a single entrance and exit. The representation can be used to predict traffic's evolution over time and space, including transient phenomena such as the building, propagation, and dissipation of queues. The easy-to-solve difference equations used to predict traffic's evolution are shown to be the discrete analog of the differential equations arising from a special case of the hydrodynamic model of traffic flow. The proposed method automatically generates appropriate changes in density at locations where the hydrodynamic theory would call for a shockwave; i.e., a jump in density such as those typically seen at the end of every queue. The complex side calculations required by classical methods to keep track of shockwaves are thus eliminated. The paper also shows how the equations can mimic the real-life development of stop-and-go traffic within moving queues.

2,781 citations

Journal ArticleDOI
TL;DR: This article shows how the evolution of multi-commodity traffic flows over complex networks can be predicted over time, based on a simple macroscopic computer representation of traffic flow that is consistent with the kinematic wave theory under all traffic conditions.
Abstract: This article shows how the evolution of multi-commodity traffic flows over complex networks can be predicted over time, based on a simple macroscopic computer representation of traffic flow that is consistent with the kinematic wave theory under all traffic conditions. The method does not use ad hoc procedures to treat special situations. After a brief review of the basic model for one link, the article describes how three-legged junctions can be modeled. It then introduces a numerical procedure for networks, assuming that a time-varying origin-destination (O-D) table is given and that the proportion of turns at every junction is known. These assumptions are reasonable for numerical analysis of disaster evacuation plans. The results are then extended to the case where, instead of the turning proportions, the best routes to each destination from every junction are known at all times. For technical reasons explained in the text, the procedure is more complicated in this case, requiring more computer memory and more time for execution. The effort is estimated to be about an order of magnitude greater than for the static traffic assignment problem on a network of the same size. The procedure is ideally suited for parallel computing. It is hoped that the results in the article will lead to more realistic models of freeway flow, disaster evacuations and dynamic traffic assignment for the evening commute.

1,891 citations

Journal ArticleDOI
TL;DR: A new "second order" model of traffic flow is introduced, which replaces the space derivative with a convective derivative and nicely predicts instabilities near the vacuum, i.e., for very light traffic.
Abstract: We introduce a new "second order" model of traffic flow. As noted in [C. Daganzo, Requiem for second-order fluid with approximation to traffic flow, Transportation Res. Part B, 29 (1995), pp. 277--286], the previous "second order" models, i.e., models with two equations (mass and "momentum"), lead to nonphysical effects, probably because they try to mimic the gas dynamics equations, with an unrealistic dependence on the acceleration with respect to the space derivative of the "pressure." We simply replace this space derivative with a convective derivative, and we show that this very simple repair completely resolves the inconsistencies of these models. Moreover, our model nicely predicts instabilities near the vacuum, i.e., for very light traffic.

1,158 citations


Cites background from "Shock Waves on the Highway"

  • ...The prototype of “first order models” (in other words, of scalar conservation laws) is the celebrated Lighthill–Whitham–Richards (LWR) model [19], [38], [32], [13]...

    [...]

Journal ArticleDOI
TL;DR: In this paper, it was shown that a small amplitude disturbance propagates through a series of cars in the manner described by linear theories, except that the dependence of the wave velocity on the car velocity causes an accleration wave to spread as it propagates and a deceleration wave forming a stable shock.
Abstract: It is assumed that the velocity of a car at time t is some nonlinear function of the spacial headway at time t-Δ, so the equations of motion for a sequence of cars consists of a set of differential-difference equations. There is a special family of velocity-headway relations that agrees well with experimental data for steady flow, and that also gives differential equations which for Δ = 0 can be solved explicitly. Some exact solutions of these equations show that a small amplitude disturbance propagates through a series of cars in the manner described by linear theories except that the dependence of the wave velocity on the car velocity causes an accleration wave to spread as it propagates and a deceleration wave to form a stable shock. These conclusions are then shown to hold for quite general types of velocity-headway relations, and to yield a theory that in certain limiting cases gives all the results of the linear car-following theories and in other cases all the features of the nonlinear continuum theories, plus a detailed picture of the shock structure.

918 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors studied the dynamics of a line of traffic composed of n vehicles, where the movements of the vehicles are controlled by an idealized ''law of separation'' which specifies that each vehicle must maintain a certain prescribed following distance from the preceding vehicle.
Abstract: The dynamics of a line of traffic composed of n vehicles is studied mathematically. It is postulated that the movements of the several vehicles are controlled by an idealized ``law of separation.'' The law considered in the analysis specifies that each vehicle must maintain a certain prescribed ``following distance'' from the preceding vehicle. This distance is the sum of a distance proportional to the velocity of the following vehicle and a certain given minimum distance of separation when the vehicles are at rest. By the application of this postulated law to the motion of the column of vehicles, the differential equations governing the dynamic state of the system are obtained.The solution of the dynamical equations for several assumed types of motion of the leading vehicle is effected by the operational or Laplace transform method and the velocities and accelerations of the various vehicles are thus obtained. Consideration is given to the use of an electrical analog computer for studying the dynamical e...

1,179 citations