scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Si, SiGe Nanowire Devices by Top–Down Technology and Their Applications

TL;DR: The current technology status for realizing the GAA NW device structures and their applications in logic circuit and nonvolatile memories are reviewed and the challenges and opportunities are outlined.
Abstract: Nanowire (NW) devices, particularly the gate-all-around (GAA) CMOS architecture, have emerged as the front-runner for pushing CMOS scaling beyond the roadmap. These devices offer unique advantages over their planar counterparts which make them feasible as an option for 22 -nm and beyond technology nodes. This paper reviews the current technology status for realizing the GAA NW device structures and their applications in logic circuit and nonvolatile memories. We also take a glimpse into applications of NWs in the ldquomore-than-Moorerdquo regime and briefly discuss the application of NWs as biochemical sensors. Finally, we summarize the status and outline the challenges and opportunities of the NW technology.
Citations
More filters
Journal ArticleDOI
TL;DR: The reproducible transition from hole- to electron-dominated transport is clearly demonstrated by the observation of electron-driven negative differential resistance and provides a significant step towards a better understanding of charge-trapping-induced transport in Ge nanostructures.
Abstract: The performance of nanoscale electronic and photonic devices critically depends on the size and geometry and may significantly differ from those of their bulk counterparts. Along with confinement effects, the inherently high surface-to-volume ratio of nanostructures causes their properties to strongly depend on the surface. With a high and almost symmetric electron and hole mobility, Ge is considered to be a key material extending device performances beyond the limits imposed by miniaturization. Nevertheless, the deleterious effects of charge trapping are still a severe limiting factor for applications of Ge-based nanoscale devices. In this work, we show exemplarily for Ge nanowires that controlling the surface trap population by electrostatic gating can be utilized for effective surface doping. The reproducible transition from hole- to electron-dominated transport is clearly demonstrated by the observation of electron-driven negative differential resistance and provides a significant step towards a better understanding of charge-trapping-induced transport in Ge nanostructures.

14 citations

Journal ArticleDOI
Ruijin Hu1, Shun Xu1, Junzhuan Wang1, Yi Shi1, Jun Xu1, Kunji Chen1, Linwei Yu1 
TL;DR: An unprecedented uniform and reliable growth integration of 10-layer stacked Si nanowires (SiNWs) has been accomplished, for the very first time, via a new groove-confined and tailored catalyst formation and guided growth upon the truncated sidewall of SiO2/SiNx multilayers.
Abstract: Bottom-up catalytic growth offers a high-yield, versatile, and powerful tool for the construction of versatile 3D nanocomplexes, while the major challenge is to achieve a precise location and uniformity control, as guaranteed by top-down lithography. Here, an unprecedented uniform and reliable growth integration of 10-layer stacked Si nanowires (SiNWs) has been accomplished, for the very first time, via a new groove-confined and tailored catalyst formation and guided growth upon the truncated sidewall of SiO2/SiNx multilayers. The SiNW array accomplishes a narrow diameter of Dnw = 28 ± 2.4 nm, NW-to-NW spacing of tsp = 40 nm, and extremely stable growth over Lnw > 50 μm and bending locations, which can compete with or even outperform the state-of-the-art top-down lithography and etching approaches, in terms of stacking number, channel uniformity at different levels, fabrication cost, and efficiency. These results provide a solid basis to establish a new 3D integration approach to batch-manufacture various advanced electronic and sensor applications.

14 citations

Journal ArticleDOI
TL;DR: A simple integrative approach involving vapor-liquid-solid growth followed by selective oxidation steps to the construction of core-shell nanowires and higher-level ordered systems with scalable configurations is developed.
Abstract: Selective oxidation of the silicon element of silicon germanium (SiGe) alloys during thermal oxidation is a very important and technologically relevant mechanism used to fabricate a variety of microelectronic devices. We develop here a simple integrative approach involving vapor-liquid-solid (VLS) growth followed by selective oxidation steps to the construction of core-shell nanowires and higher-level ordered systems with scalable configurations. We examine the selective oxidation/condensation process under nonequilibrium conditions that gives rise to spontaneous formation of core-shell structures by germanium condensation. We contrast this strategy that uses reaction-diffusion-segregation mechanisms to produce coherently strained structures with highly configurable geometry and abrupt interfaces with growth-based processes which lead to low strained systems with nonuniform composition, three-dimensional morphology, and broad core-shell interface. We specially focus on SiGe core-shell nanowires and demonstrate that they can have up to 70% Ge-rich shell and 2% homogeneous strain with core diameter as small as 14 nm. Key elements of the building process associated with this approach are identified with regard to existing theoretical models. Moreover, starting from results of ab initio calculations, we discuss the electronic structure of these novel nanostructures as well as their wide potential for advanced device applications.

13 citations

Patent
03 Jul 2012
TL;DR: In this paper, a nanowire tunnel field effect transistor (FET) is described, where the silicon portion is surrounded by a gate structure disposed circumferentially around the silicon part, a drain region including an doped silicon portion extending from the first distal end, a portion of the doped polysilicon portion arranged in the channel region, a cavity defined by the second distal-end of the silicon component and an inner diameter of the gate structure, and a source region including a doped epi-silicon component epitaxially extending from a
Abstract: A nanowire tunnel field effect transistor (FET) device includes a channel region including a silicon portion having a first distal end and a second distal end, the silicon portion is surrounded by a gate structure disposed circumferentially around the silicon portion, a drain region including an doped silicon portion extending from the first distal end, a portion of the doped silicon portion arranged in the channel region, a cavity defined by the second distal end of the silicon portion and an inner diameter of the gate structure, and a source region including a doped epi-silicon portion epitaxially extending from the second distal end of the silicon portion in the cavity, a first pad region, and a portion of a silicon substrate.

13 citations

Patent
20 Jul 2012
TL;DR: In this paper, an inverter device includes a first nanowire connected to a voltage source node and a ground node, a first p-type field effect transistor (pFET) device having a gate disposed on the first nano-connector, and a first n-type nFET device with a gate discarded on the ground node.
Abstract: An inverter device includes a first nanowire connected to a voltage source node and a ground node, a first p-type field effect transistor (pFET) device having a gate disposed on the first nanowire, and a first n-type field effect transistor (nFET) device having a gate disposed on the first nanowire.

13 citations

References
More filters
Journal ArticleDOI
01 Jan 1998
TL;DR: Integrated circuits will lead to such wonders as home computers or at least terminals connected to a central computer, automatic controls for automobiles, and personal portable communications equipment as mentioned in this paper. But the biggest potential lies in the production of large systems.
Abstract: The future of integrated electronics is the future of electronics itself. The advantages of integration will bring about a proliferation of electronics, pushing this science into many new areas. Integrated circuits will lead to such wonders as home computers—or at least terminals connected to a central computer—automatic controls for automobiles, and personal portable communications equipment. The electronic wristwatch needs only a display to be feasible today. But the biggest potential lies in the production of large systems. In telephone communications, integrated circuits in digital filters will separate channels on multiplex equipment. Integrated circuits will also switch telephone circuits and perform data processing. Computers will be more powerful, and will be organized in completely different ways. For example, memories built of integrated electronics may be distributed throughout the machine instead of being concentrated in a central unit. In addition, the improved reliability made possible by integrated circuits will allow the construction of larger processing units. Machines similar to those in existence today will be built at lower costs and with faster turnaround.

9,647 citations

Journal ArticleDOI
TL;DR: A comprehensive review of 1D nanostructures can be found in this article, where the authors provide a comprehensive overview of current research activities that concentrate on one-dimensional (1D) nanostructure (wires, rods, belts and tubes).
Abstract: This article provides a comprehensive review of current research activities that concentrate on one-dimensional (1D) nanostructures—wires, rods, belts, and tubes—whose lateral dimensions fall anywhere in the range of 1 to 100 nm. We devote the most attention to 1D nanostructures that have been synthesized in relatively copious quantities using chemical methods. We begin this article with an overview of synthetic strategies that have been exploited to achieve 1D growth. We then elaborate on these approaches in the following four sections: i) anisotropic growth dictated by the crystallographic structure of a solid material; ii) anisotropic growth confined and directed by various templates; iii) anisotropic growth kinetically controlled by supersaturation or through the use of an appropriate capping reagent; and iv) new concepts not yet fully demonstrated, but with long-term potential in generating 1D nanostructures. Following is a discussion of techniques for generating various types of important heterostructured nanowires. By the end of this article, we highlight a range of unique properties (e.g., thermal, mechanical, electronic, optoelectronic, optical, nonlinear optical, and field emission) associated with different types of 1D nanostructures. We also briefly discuss a number of methods potentially useful for assembling 1D nanostructures into functional devices based on crossbar junctions, and complex architectures such as 2D and 3D periodic lattices. We conclude this review with personal perspectives on the directions towards which future research on this new class of nanostructured materials might be directed.

8,259 citations


"Si, SiGe Nanowire Devices by Top–Do..." refers background in this paper

  • ...vapor–liquid–solid chemistry [11], typically with the help of a...

    [...]

Journal Article
TL;DR: Integrated circuits will lead to such wonders as home computers or at least terminals connected to a central computer, automatic controls for automobiles, and personal portable communications equipment as discussed by the authors. But the biggest potential lies in the production of large systems.
Abstract: The future of integrated electronics is the future of electronics itself. The advantages of integration will bring about a proliferation of electronics, pushing this science into many new areas. Integrated circuits will lead to such wonders as home computers—or at least terminals connected to a central computer—automatic controls for automobiles, and personal portable communications equipment. The electronic wristwatch needs only a display to be feasible today. But the biggest potential lies in the production of large systems. In telephone communications, integrated circuits in digital filters will separate channels on multiplex equipment. Integrated circuits will also switch telephone circuits and perform data processing. Computers will be more powerful, and will be organized in completely different ways. For example, memories built of integrated electronics may be distributed throughout the machine instead of being concentrated in a central unit. In addition, the improved reliability made possible by integrated circuits will allow the construction of larger processing units. Machines similar to those in existence today will be built at lower costs and with faster turnaround.

6,077 citations

Journal ArticleDOI
17 Aug 2001-Science
TL;DR: The small size and capability of these semiconductor nanowires for sensitive, label-free, real-time detection of a wide range of chemical and biological species could be exploited in array-based screening and in vivo diagnostics.
Abstract: Boron-doped silicon nanowires (SiNWs) were used to create highly sensitive, real-time electrically based sensors for biological and chemical species. Amine- and oxide-functionalized SiNWs exhibit pH-dependent conductance that was linear over a large dynamic range and could be understood in terms of the change in surface charge during protonation and deprotonation. Biotin-modified SiNWs were used to detect streptavidin down to at least a picomolar concentration range. In addition, antigen-functionalized SiNWs show reversible antibody binding and concentration-dependent detection in real time. Lastly, detection of the reversible binding of the metabolic indicator Ca2+ was demonstrated. The small size and capability of these semiconductor nanowires for sensitive, label-free, real-time detection of a wide range of chemical and biological species could be exploited in array-based screening and in vivo diagnostics.

5,841 citations


"Si, SiGe Nanowire Devices by Top–Do..." refers background in this paper

  • ...sensing of chemical/biochemical species [9]....

    [...]

  • ...Electrical sensing through change in conductance (or resistance) of Si-NW has been demonstrated successfully for metal ions [9], [10], [62], DNA [63]–[68], proteins [69]–[71], virus [72], and cells [73]....

    [...]

Journal ArticleDOI
TL;DR: Highly sensitive, label-free, multiplexed electrical detection of cancer markers using silicon-nanowire field-effect devices in which distinct nanowires and surface receptors are incorporated into arrays opens up substantial possibilities for diagnosis and treatment of cancer and other complex diseases.
Abstract: We describe highly sensitive, label-free, multiplexed electrical detection of cancer markers using silicon-nanowire field-effect devices in which distinct nanowires and surface receptors are incorporated into arrays. Protein markers were routinely detected at femtomolar concentrations with high selectivity, and simultaneous incorporation of control nanowires enabled discrimination against false positives. Nanowire arrays allowed highly selective and sensitive multiplexed detection of prostate specific antigen (PSA), PSA-a1-antichymotrypsin, carcinoembryonic antigen and mucin-1, including detection to at least 0.9 pg/ml in undiluted serum samples. In addition, nucleic acid receptors enabled real-time assays of the binding, activity and small-molecule inhibition of telomerase using unamplified extracts from as few as ten tumor cells. The capability for multiplexed real-time monitoring of protein markers and telomerase activity with high sensitivity and selectivity in clinically relevant samples opens up substantial possibilities for diagnosis and treatment of cancer and other complex diseases.

2,396 citations


"Si, SiGe Nanowire Devices by Top–Do..." refers background in this paper

  • ...Electrical sensing through change in conductance (or resistance) of Si-NW has been demonstrated successfully for metal ions [9], [10], [62], DNA [63]–[68], proteins [69]–[71], virus [72], and cells [73]....

    [...]