scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Si, SiGe Nanowire Devices by Top–Down Technology and Their Applications

TL;DR: The current technology status for realizing the GAA NW device structures and their applications in logic circuit and nonvolatile memories are reviewed and the challenges and opportunities are outlined.
Abstract: Nanowire (NW) devices, particularly the gate-all-around (GAA) CMOS architecture, have emerged as the front-runner for pushing CMOS scaling beyond the roadmap. These devices offer unique advantages over their planar counterparts which make them feasible as an option for 22 -nm and beyond technology nodes. This paper reviews the current technology status for realizing the GAA NW device structures and their applications in logic circuit and nonvolatile memories. We also take a glimpse into applications of NWs in the ldquomore-than-Moorerdquo regime and briefly discuss the application of NWs as biochemical sensors. Finally, we summarize the status and outline the challenges and opportunities of the NW technology.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a high aspect ratio silicon nanowire is proposed for a stiction immune gate-all-around (GAA) MOSFET on a bulk substrate with a fully CMOS compatible technology.
Abstract: A high aspect ratio silicon nanowire is proposed for a stiction immune gate-all-around (GAA) MOSFET on a bulk substrate with a fully CMOS compatible technology. Epitaxially grown SiGe serves as a sacrificial layer to yield a suspended nanowire structure. A high aspect ratio structure derived from an epitaxially grown thick-Si film provides a stiction immune property. The fabricated GAA device on a bulk substrate shows superior short-channel effects and improved drive current. In addition, an extremely long suspended nanowire structure can be implemented to a nand string composed of 64 or longer cells.

8 citations


Cites background from "Si, SiGe Nanowire Devices by Top–Do..."

  • ...channel potential [5]–[8], which is a key element in a nanoscale CMOS era....

    [...]

  • ...previous studies in this area have thus focused on an equilateral nanowire structure: circular- and square-type structures [5]–[8]....

    [...]

Journal ArticleDOI
Yuchao Liu1, Ru Huang1, Runsheng Wang1, Jing Zhuge1, Qiumin Xu1, Yangyuan Wang1 
TL;DR: In this paper, the design optimization for digital circuits built with gate-all-around silicon nanowire transistors (SNWTs) is discussed in details, and the optimized layout parameters for power-driven and area-driven design are obtained.
Abstract: The design optimization for digital circuits built with gate-all-around silicon nanowire transistors (SNWTs) is discussed in details. Based on the verified multiwire SNWT compact model with accurate parasitic capacitance and resistance modeling, the design consideration of SNWT digital circuits (SNWTCs) at a 16-nm technology node, such as the SNWT ring oscillator (SNWT-RO), is discussed with the optimization of key process and layout parameters in the multiwire SNWT. In order to reduce the parasitic components of SNWTs and improve SNWTCs' performance (including delay, power, and layout area), process (including nanowire diameter and other related parameters) and layout parameters (including wire number per transistor and footprint width of SNWTs) should be carefully designed. Through design optimization, the total capacitance and parasitic resistance of the SNWT can be reduced by over 80% compared with nonoptimized parasitic components, which leads to more than 90% reduction of circuit-level delay and power. Furthermore, the design optimization is carried out for power-driven design and area-driven design, respectively. For each case, the SNWT-RO with fan-out of 1 loading and 4 loading is optimized with variable power supply voltage for optimization. The optimized layout parameters for power-driven design and area-driven design are obtained, which can provide useful guidelines for SNWTC design.

8 citations

Journal ArticleDOI
TL;DR: In this article, the role of Ge as a catalyst or inhibitor for the oxidation process in SiGe was evaluated and compared to previous reports and established models for Si oxidation. But the experimental results indicated that the presence of Ge in very thin films of SiGe does not lead to enhanced or retarded oxidation rates as compared to Si.
Abstract: In order to evaluate the role of Ge as a catalyst or inhibitor for the oxidation process in SiGe, oxidation rates for sub-100-nm films of SiGe are examined and compared to previous reports and established models for Si oxidation. Values for the Ge concentration in the pile-up layer at the oxidation interface are considered as well as the more traditional approach of considering the Ge content in the as-grown SiGe film. The experimental results presented here indicate that oxidation rates for SiGe closely match those of Si and provide evidence that the presence of Ge in very thin films of SiGe does not lead to enhanced or retarded oxidation rates as compared to Si. This comparative analysis is performed with a focus on oxidation of epitaxial thin films of Si1−xGex in dry O2 at 1 atm at 800, 850, 900, 950, and 1000 °C.

8 citations

Journal ArticleDOI
TL;DR: The Schottky contact and Mott’s variable-range-hopping resistances connected in parallel in the nanocontact are investigated and a model of Ti/TiOx in the interface between the metal electrodes and nanowires is proposed.
Abstract: To fabricate reliable nanoelectronics, whether by top-down or bottom-up processes, it is necessary to study the electrical properties of nanocontacts. The effect of nanocontact disorder on device properties has been discussed but not quantitatively studied. Here, by carefully analyzing the temperature dependence of device electrical characteristics and by inspecting them with a microscope, we investigated the Schottky contact and Mott’s variable-range-hopping resistances connected in parallel in the nanocontact. To interpret these parallel resistances, we proposed a model of Ti/TiOx in the interface between the metal electrodes and nanowires. The hopping resistance as well as the nanocontact disorder dominated the total device resistance for high-resistance devices, especially at low temperatures. Furthermore, we introduced nanocontact disorder to modulate the light and gas responsivities of the device; unexpectedly, it multiplied the sensitivities compared with the intrinsic sensitivity of the nanowires. Our results improve the collective understanding of electrical contacts to low-dimensional semiconductor devices and will aid performance optimization in future nanoelectronics.

8 citations

Journal ArticleDOI
TL;DR: In this paper, a novel n-type nanowire/nanosheet (NW/NS) vertical sandwich gate-all-around field effect transistor (nVSAFET) with self-aligned and replaced high-κ metal gates (HKMGs) is presented for the first time, aiming at a 3 nm technology node and beyond.
Abstract: A novel n-type nanowire/nanosheet (NW/NS) vertical sandwich gate-all-around field-effect-transistor (nVSAFET) with self-aligned and replaced high-κ metal gates (HKMGs) is presented for the first time, aiming at a 3 nm technology node and beyond The nVSAFETs were fabricated by an integration flow of Si/SiGe epitaxy, quasi-atomic layer etching (qALE) of SiGe selective to Si, formation of SiGe/Si core/shell NS/NW structure, building of nitride dummy gate, and replacement of the dummy gate This fabrication method is complementary metal oxide semiconductor (CMOS)-compatible, simple, and reproducible, and NWs with a diameter of 17 nm and NSs with a thickness of 20 nm were obtained Excellent control of short-channel-effects was presented The device performance was also investigated and discussed The proposed integration scheme has great potential for applications in chip manufacturing, especially with vertical channel devices

8 citations

References
More filters
Journal ArticleDOI
01 Jan 1998
TL;DR: Integrated circuits will lead to such wonders as home computers or at least terminals connected to a central computer, automatic controls for automobiles, and personal portable communications equipment as mentioned in this paper. But the biggest potential lies in the production of large systems.
Abstract: The future of integrated electronics is the future of electronics itself. The advantages of integration will bring about a proliferation of electronics, pushing this science into many new areas. Integrated circuits will lead to such wonders as home computers—or at least terminals connected to a central computer—automatic controls for automobiles, and personal portable communications equipment. The electronic wristwatch needs only a display to be feasible today. But the biggest potential lies in the production of large systems. In telephone communications, integrated circuits in digital filters will separate channels on multiplex equipment. Integrated circuits will also switch telephone circuits and perform data processing. Computers will be more powerful, and will be organized in completely different ways. For example, memories built of integrated electronics may be distributed throughout the machine instead of being concentrated in a central unit. In addition, the improved reliability made possible by integrated circuits will allow the construction of larger processing units. Machines similar to those in existence today will be built at lower costs and with faster turnaround.

9,647 citations

Journal ArticleDOI
TL;DR: A comprehensive review of 1D nanostructures can be found in this article, where the authors provide a comprehensive overview of current research activities that concentrate on one-dimensional (1D) nanostructure (wires, rods, belts and tubes).
Abstract: This article provides a comprehensive review of current research activities that concentrate on one-dimensional (1D) nanostructures—wires, rods, belts, and tubes—whose lateral dimensions fall anywhere in the range of 1 to 100 nm. We devote the most attention to 1D nanostructures that have been synthesized in relatively copious quantities using chemical methods. We begin this article with an overview of synthetic strategies that have been exploited to achieve 1D growth. We then elaborate on these approaches in the following four sections: i) anisotropic growth dictated by the crystallographic structure of a solid material; ii) anisotropic growth confined and directed by various templates; iii) anisotropic growth kinetically controlled by supersaturation or through the use of an appropriate capping reagent; and iv) new concepts not yet fully demonstrated, but with long-term potential in generating 1D nanostructures. Following is a discussion of techniques for generating various types of important heterostructured nanowires. By the end of this article, we highlight a range of unique properties (e.g., thermal, mechanical, electronic, optoelectronic, optical, nonlinear optical, and field emission) associated with different types of 1D nanostructures. We also briefly discuss a number of methods potentially useful for assembling 1D nanostructures into functional devices based on crossbar junctions, and complex architectures such as 2D and 3D periodic lattices. We conclude this review with personal perspectives on the directions towards which future research on this new class of nanostructured materials might be directed.

8,259 citations


"Si, SiGe Nanowire Devices by Top–Do..." refers background in this paper

  • ...vapor–liquid–solid chemistry [11], typically with the help of a...

    [...]

Journal Article
TL;DR: Integrated circuits will lead to such wonders as home computers or at least terminals connected to a central computer, automatic controls for automobiles, and personal portable communications equipment as discussed by the authors. But the biggest potential lies in the production of large systems.
Abstract: The future of integrated electronics is the future of electronics itself. The advantages of integration will bring about a proliferation of electronics, pushing this science into many new areas. Integrated circuits will lead to such wonders as home computers—or at least terminals connected to a central computer—automatic controls for automobiles, and personal portable communications equipment. The electronic wristwatch needs only a display to be feasible today. But the biggest potential lies in the production of large systems. In telephone communications, integrated circuits in digital filters will separate channels on multiplex equipment. Integrated circuits will also switch telephone circuits and perform data processing. Computers will be more powerful, and will be organized in completely different ways. For example, memories built of integrated electronics may be distributed throughout the machine instead of being concentrated in a central unit. In addition, the improved reliability made possible by integrated circuits will allow the construction of larger processing units. Machines similar to those in existence today will be built at lower costs and with faster turnaround.

6,077 citations

Journal ArticleDOI
17 Aug 2001-Science
TL;DR: The small size and capability of these semiconductor nanowires for sensitive, label-free, real-time detection of a wide range of chemical and biological species could be exploited in array-based screening and in vivo diagnostics.
Abstract: Boron-doped silicon nanowires (SiNWs) were used to create highly sensitive, real-time electrically based sensors for biological and chemical species. Amine- and oxide-functionalized SiNWs exhibit pH-dependent conductance that was linear over a large dynamic range and could be understood in terms of the change in surface charge during protonation and deprotonation. Biotin-modified SiNWs were used to detect streptavidin down to at least a picomolar concentration range. In addition, antigen-functionalized SiNWs show reversible antibody binding and concentration-dependent detection in real time. Lastly, detection of the reversible binding of the metabolic indicator Ca2+ was demonstrated. The small size and capability of these semiconductor nanowires for sensitive, label-free, real-time detection of a wide range of chemical and biological species could be exploited in array-based screening and in vivo diagnostics.

5,841 citations


"Si, SiGe Nanowire Devices by Top–Do..." refers background in this paper

  • ...sensing of chemical/biochemical species [9]....

    [...]

  • ...Electrical sensing through change in conductance (or resistance) of Si-NW has been demonstrated successfully for metal ions [9], [10], [62], DNA [63]–[68], proteins [69]–[71], virus [72], and cells [73]....

    [...]

Journal ArticleDOI
TL;DR: Highly sensitive, label-free, multiplexed electrical detection of cancer markers using silicon-nanowire field-effect devices in which distinct nanowires and surface receptors are incorporated into arrays opens up substantial possibilities for diagnosis and treatment of cancer and other complex diseases.
Abstract: We describe highly sensitive, label-free, multiplexed electrical detection of cancer markers using silicon-nanowire field-effect devices in which distinct nanowires and surface receptors are incorporated into arrays. Protein markers were routinely detected at femtomolar concentrations with high selectivity, and simultaneous incorporation of control nanowires enabled discrimination against false positives. Nanowire arrays allowed highly selective and sensitive multiplexed detection of prostate specific antigen (PSA), PSA-a1-antichymotrypsin, carcinoembryonic antigen and mucin-1, including detection to at least 0.9 pg/ml in undiluted serum samples. In addition, nucleic acid receptors enabled real-time assays of the binding, activity and small-molecule inhibition of telomerase using unamplified extracts from as few as ten tumor cells. The capability for multiplexed real-time monitoring of protein markers and telomerase activity with high sensitivity and selectivity in clinically relevant samples opens up substantial possibilities for diagnosis and treatment of cancer and other complex diseases.

2,396 citations


"Si, SiGe Nanowire Devices by Top–Do..." refers background in this paper

  • ...Electrical sensing through change in conductance (or resistance) of Si-NW has been demonstrated successfully for metal ions [9], [10], [62], DNA [63]–[68], proteins [69]–[71], virus [72], and cells [73]....

    [...]