scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Si, SiGe Nanowire Devices by Top–Down Technology and Their Applications

TL;DR: The current technology status for realizing the GAA NW device structures and their applications in logic circuit and nonvolatile memories are reviewed and the challenges and opportunities are outlined.
Abstract: Nanowire (NW) devices, particularly the gate-all-around (GAA) CMOS architecture, have emerged as the front-runner for pushing CMOS scaling beyond the roadmap. These devices offer unique advantages over their planar counterparts which make them feasible as an option for 22 -nm and beyond technology nodes. This paper reviews the current technology status for realizing the GAA NW device structures and their applications in logic circuit and nonvolatile memories. We also take a glimpse into applications of NWs in the ldquomore-than-Moorerdquo regime and briefly discuss the application of NWs as biochemical sensors. Finally, we summarize the status and outline the challenges and opportunities of the NW technology.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the NBTI/PBTI reliability model for p/n-silicon nanowire (SiNW) MOSFETs is obtained from experimental SiNW FETs using a range of stress voltage, time, and temperature.
Abstract: In this work, negative bias temperature instability/positive bias temperature instability (NBTI/PBTI) reliability model for p/n-silicon nanowire (SiNW) MOSFETs is obtained from experimental SiNW FETs using a range of stress voltage, time, and temperature. We have incorporated the NBTI/PBTI $\text{V}_{\mathrm{ T}}$ model in a physics-based SiNW FET Verilog-A compact model for circuit analysis. For the first time, using integrated model, we report time zero variability and BTI reliability of the core logic gates (INVERTER, NAND, and NOR) and read/write stability of 6T SRAM cell. We demonstrate that the delay degradation is circuit topology dependent in which series-connected transistors are more prone to degradation due to PBTI (NBTI) in NAND (NOR) gates. The benchmarking of BTI in SiNW FET with FinFET and planar devices show SiNW have higher degradation, however it can be minimized by using optimized SiNW FET configuration. Further, we show that the SRAM cell design margins are configuration dependent in which impact of BTI degrades the read noise margin (RNM) by 15–30%, and write noise margin (WNM) improves by 5–8% for 10-Year lifetime. We find that the combined impact of time zero variability and BTI reliability degrades the mean value of circuit delay and SRAM RNM stability, however, the degradation is found to be comparable to the reported planar and FinFET data. It is also seen that different configuration increases BTI variability (~5-25% increase) which can be minimized. Using the results, we propose a method to minimize degradation under the influence of variability and reliability by selecting appropriate SiNW FET design configuration. The comprehensive predictive model framework presented here is a valuable tool for variability and reliability-aware SiNW CMOS circuit design and analysis.

6 citations


Cites methods from "Si, SiGe Nanowire Devices by Top–Do..."

  • ...oxidation process for SiNW structure generation [19]....

    [...]

  • ...(a) Shows the fabricated SiNW FET structure after the gate patterning [19], (b) Schematic of the SiNW FET device....

    [...]

Journal ArticleDOI
TL;DR: It is demonstrated on a phosphorus-doped silicon nanowire that the ionization energy can be effectively tuned and the impurity backscattering can also be reduced.
Abstract: Due to the proximity to an embedding medium with low dielectric constant (e.g., oxides), semiconductor nanowires have higher impurity ionization energy than their bulk counterparts, resulting lower free carrier density. Using ab initio calculations within density functional theory, we propose a way to reduce the ionization energy in nanowires by fabricating a special cross section with appropriate engineering of doping and an applied gate voltage. We demonstrate on a phosphorus-doped silicon nanowire that the ionization energy can be effectively tuned and the impurity backscattering can also be reduced. For instance, even without special engineering of doping, the free carrier density may increase by 40% in a silicon nanowire with 15 nm diameter and special cross section. Our proposal has profound implications to fabricate nanowire devices with high carrier density.

6 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate a selective dopant activation scheme which results from the dipole moments of inactive PnV structures within the crystal lattice and their direct energy coupling with the external electric field.

5 citations

References
More filters
Journal ArticleDOI
01 Jan 1998
TL;DR: Integrated circuits will lead to such wonders as home computers or at least terminals connected to a central computer, automatic controls for automobiles, and personal portable communications equipment as mentioned in this paper. But the biggest potential lies in the production of large systems.
Abstract: The future of integrated electronics is the future of electronics itself. The advantages of integration will bring about a proliferation of electronics, pushing this science into many new areas. Integrated circuits will lead to such wonders as home computers—or at least terminals connected to a central computer—automatic controls for automobiles, and personal portable communications equipment. The electronic wristwatch needs only a display to be feasible today. But the biggest potential lies in the production of large systems. In telephone communications, integrated circuits in digital filters will separate channels on multiplex equipment. Integrated circuits will also switch telephone circuits and perform data processing. Computers will be more powerful, and will be organized in completely different ways. For example, memories built of integrated electronics may be distributed throughout the machine instead of being concentrated in a central unit. In addition, the improved reliability made possible by integrated circuits will allow the construction of larger processing units. Machines similar to those in existence today will be built at lower costs and with faster turnaround.

9,647 citations

Journal ArticleDOI
TL;DR: A comprehensive review of 1D nanostructures can be found in this article, where the authors provide a comprehensive overview of current research activities that concentrate on one-dimensional (1D) nanostructure (wires, rods, belts and tubes).
Abstract: This article provides a comprehensive review of current research activities that concentrate on one-dimensional (1D) nanostructures—wires, rods, belts, and tubes—whose lateral dimensions fall anywhere in the range of 1 to 100 nm. We devote the most attention to 1D nanostructures that have been synthesized in relatively copious quantities using chemical methods. We begin this article with an overview of synthetic strategies that have been exploited to achieve 1D growth. We then elaborate on these approaches in the following four sections: i) anisotropic growth dictated by the crystallographic structure of a solid material; ii) anisotropic growth confined and directed by various templates; iii) anisotropic growth kinetically controlled by supersaturation or through the use of an appropriate capping reagent; and iv) new concepts not yet fully demonstrated, but with long-term potential in generating 1D nanostructures. Following is a discussion of techniques for generating various types of important heterostructured nanowires. By the end of this article, we highlight a range of unique properties (e.g., thermal, mechanical, electronic, optoelectronic, optical, nonlinear optical, and field emission) associated with different types of 1D nanostructures. We also briefly discuss a number of methods potentially useful for assembling 1D nanostructures into functional devices based on crossbar junctions, and complex architectures such as 2D and 3D periodic lattices. We conclude this review with personal perspectives on the directions towards which future research on this new class of nanostructured materials might be directed.

8,259 citations


"Si, SiGe Nanowire Devices by Top–Do..." refers background in this paper

  • ...vapor–liquid–solid chemistry [11], typically with the help of a...

    [...]

Journal Article
TL;DR: Integrated circuits will lead to such wonders as home computers or at least terminals connected to a central computer, automatic controls for automobiles, and personal portable communications equipment as discussed by the authors. But the biggest potential lies in the production of large systems.
Abstract: The future of integrated electronics is the future of electronics itself. The advantages of integration will bring about a proliferation of electronics, pushing this science into many new areas. Integrated circuits will lead to such wonders as home computers—or at least terminals connected to a central computer—automatic controls for automobiles, and personal portable communications equipment. The electronic wristwatch needs only a display to be feasible today. But the biggest potential lies in the production of large systems. In telephone communications, integrated circuits in digital filters will separate channels on multiplex equipment. Integrated circuits will also switch telephone circuits and perform data processing. Computers will be more powerful, and will be organized in completely different ways. For example, memories built of integrated electronics may be distributed throughout the machine instead of being concentrated in a central unit. In addition, the improved reliability made possible by integrated circuits will allow the construction of larger processing units. Machines similar to those in existence today will be built at lower costs and with faster turnaround.

6,077 citations

Journal ArticleDOI
17 Aug 2001-Science
TL;DR: The small size and capability of these semiconductor nanowires for sensitive, label-free, real-time detection of a wide range of chemical and biological species could be exploited in array-based screening and in vivo diagnostics.
Abstract: Boron-doped silicon nanowires (SiNWs) were used to create highly sensitive, real-time electrically based sensors for biological and chemical species. Amine- and oxide-functionalized SiNWs exhibit pH-dependent conductance that was linear over a large dynamic range and could be understood in terms of the change in surface charge during protonation and deprotonation. Biotin-modified SiNWs were used to detect streptavidin down to at least a picomolar concentration range. In addition, antigen-functionalized SiNWs show reversible antibody binding and concentration-dependent detection in real time. Lastly, detection of the reversible binding of the metabolic indicator Ca2+ was demonstrated. The small size and capability of these semiconductor nanowires for sensitive, label-free, real-time detection of a wide range of chemical and biological species could be exploited in array-based screening and in vivo diagnostics.

5,841 citations


"Si, SiGe Nanowire Devices by Top–Do..." refers background in this paper

  • ...sensing of chemical/biochemical species [9]....

    [...]

  • ...Electrical sensing through change in conductance (or resistance) of Si-NW has been demonstrated successfully for metal ions [9], [10], [62], DNA [63]–[68], proteins [69]–[71], virus [72], and cells [73]....

    [...]

Journal ArticleDOI
TL;DR: Highly sensitive, label-free, multiplexed electrical detection of cancer markers using silicon-nanowire field-effect devices in which distinct nanowires and surface receptors are incorporated into arrays opens up substantial possibilities for diagnosis and treatment of cancer and other complex diseases.
Abstract: We describe highly sensitive, label-free, multiplexed electrical detection of cancer markers using silicon-nanowire field-effect devices in which distinct nanowires and surface receptors are incorporated into arrays. Protein markers were routinely detected at femtomolar concentrations with high selectivity, and simultaneous incorporation of control nanowires enabled discrimination against false positives. Nanowire arrays allowed highly selective and sensitive multiplexed detection of prostate specific antigen (PSA), PSA-a1-antichymotrypsin, carcinoembryonic antigen and mucin-1, including detection to at least 0.9 pg/ml in undiluted serum samples. In addition, nucleic acid receptors enabled real-time assays of the binding, activity and small-molecule inhibition of telomerase using unamplified extracts from as few as ten tumor cells. The capability for multiplexed real-time monitoring of protein markers and telomerase activity with high sensitivity and selectivity in clinically relevant samples opens up substantial possibilities for diagnosis and treatment of cancer and other complex diseases.

2,396 citations


"Si, SiGe Nanowire Devices by Top–Do..." refers background in this paper

  • ...Electrical sensing through change in conductance (or resistance) of Si-NW has been demonstrated successfully for metal ions [9], [10], [62], DNA [63]–[68], proteins [69]–[71], virus [72], and cells [73]....

    [...]