scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Side Chain Engineering on Medium Bandgap Copolymers to Suppress Triplet Formation for High-Efficiency Polymer Solar Cells.

TL;DR: It is demonstrated difluoro-substitution of thiophene conjugated side chain on donor polymer can suppress triplet formation for reducing carrier recombination and indicates that side chain engineering can provide a new solution to suppress carrier recombinations toward high efficiency.
Abstract: Suppression of carrier recombination is critically important in realizing high-efficiency polymer solar cells. Herein, it is demonstrated difluoro-substitution of thiophene conjugated side chain on donor polymer can suppress triplet formation for reducing carrier recombination. A new medium bandgap 2D-conjugated D-A copolymer J91 is designed and synthesized with bi(alkyl-difluorothienyl)-benzodithiophene as donor unit and fluorobenzotriazole as acceptor unit, for taking the advantages of the synergistic fluorination on the backbone and thiophene side chain. J91 demonstrates enhanced absorption, low-lying highest occupied molecular orbital energy level, and higher hole mobility, in comparison with its control polymer J52 without fluorination on the thiophene side chains. The transient absorption spectra indicate that J91 can suppress the triplet formation in its blend film with n-type organic semiconductor acceptor m-ITIC (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(3-hexylphenyl)-dithieno[2,3-d:2,3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene). With these favorable properties, a higher power conversion efficiency of 11.63% with high VOC of 0.984 V and high JSC of 18.03 mA cm-2 is obtained for the polymer solar cells based on J91/m-ITIC with thermal annealing. The improved photovoltaic performance by thermal annealing is explained from the morphology change upon thermal annealing as revealed by photoinduced force microscopy. The results indicate that side chain engineering can provide a new solution to suppress carrier recombination toward high efficiency, thus deserves further attention.
Citations
More filters
Journal ArticleDOI
TL;DR: A new benzodithiophene unit is developed and subtle side-chain modulation of the ester greatly influences the aggregation effects and molecular packing of polymer PDTB-EF-T, demonstrating the great potential of the DTBDT-EF unit for future organic photovoltaic applications.
Abstract: To simultaneously achieve low photon energy loss (Eloss) and broad spectral response, the molecular design of the wide band gap (WBG) donor polymer with a deep HOMO level is of critical importance in fullerene-free polymer solar cells (PSCs). Herein, we developed a new benzodithiophene unit, i.e., DTBDT-EF, and conducted systematic investigations on a WBG DTBDT-EF-based donor polymer, namely, PDTB-EF-T. Due to the synergistic electron-withdrawing effect of the fluorine atom and ester group, PDTB-EF-T exhibits a higher oxidation potential, i.e., a deeper HOMO level (ca. −5.5 eV) than most well-known donor polymers. Hence, a high open-circuit voltage of 0.90 V was obtained when paired with a fluorinated small molecule acceptor (IT-4F), corresponding to a low Eloss of 0.62 eV. Furthermore, side-chain engineering demonstrated that subtle side-chain modulation of the ester greatly influences the aggregation effects and molecular packing of polymer PDTB-EF-T. With the benefits of the stronger interchain π–π int...

623 citations

Journal ArticleDOI
TL;DR: The impressive photovoltaic devices results achieved by some of important classes of conjugated polymer systems in non-fullerene organic solar cells are shown and the molecular design strategies as far as developing matching polymer donors for non- fullerene acceptors are discussed.
Abstract: Over the past few years, non-fullerene organic solar cells have been a focus of research and their power conversion efficiencies have been improved dramatically from about 6 % to over 14 % In addition to innovations in non-fullerene acceptors, the ongoing development of polymer donors has contributed significantly to the rapid progress of non-fullerene organic solar cell performance This Minireview highlights the polymer donors that enable high-performance non-fullerene organic solar cells We show the impressive photovoltaic devices results achieved by some of important classes of conjugated polymer systems in non-fullerene organic solar cells We discuss the molecular design strategies as far as developing matching polymer donors for non-fullerene acceptors We conclude with a brief summary and outlook for advances in donor polymers required for commercialization

338 citations

Journal ArticleDOI
TL;DR: Investigating a series of fullerene-free organic solar cells based on six different donor:acceptor (D:A) blends with varied highest occupied molecular orbital (HOMO) offsets demonstrates not only the validity of high-performance OSCs operating at the near zero HOMO offsets but also the charge dynamic insights of these blends, which will help gain understanding on the further improvement of Oscs.
Abstract: Herein, we investigated a series of fullerene-free organic solar cells (OSCs) based on six different donor:acceptor (D:A) blends with varied highest occupied molecular orbital (HOMO) offsets from -0.05 to 0.21 eV. First, to verify the energetic compatibility of a specific D:A pair, especially for HOMO offsets, we established a simple method to estimate the hole transfer tendencies between D and A by using bilayer hole-only devices. It reveals that the asymmetrical diode effect of the bilayer hole-only devices can correlate with the FF and Jsc of the relevant OSCs. Second, to find out whether HOMO offset is the main restriction of hole transfer, we measured transient absorption spectra and examined the hole transfer behavior in the blends, revealing that the occurrence of hole transfer is independent of the HOMO offsets and ultrafast in the time scale of ≤4.6 ps for those blends with ≥0 eV HOMO offsets. In contrast, a negative HOMO offset can significantly slow down the hole transfer with a half-time of ∼400 ps. Furthermore, we compare the device parameters under varied light intensities and discover that the bimolecular recombination should be one of the main restrictions for high device performance. Surprisingly, small HOMO offsets of 0 and 0.06 eV can also enable high PCEs of 10.42% and 11.75% for blend 2 (PTQ10:HC-PCIC) and blend 3 (PBDB-TF:HC-PCIC), respectively. Overall, our work demonstrates not only the validity of high-performance OSCs operating at the near zero HOMO offsets but also the charge dynamic insights of these blends, which will help gain understanding on the further improvement of OSCs.

325 citations

Journal ArticleDOI
TL;DR: The results prove the feasibility of efficient hole transfer and high efficiency for the PSCs with zero ∆EHOMO(D-A), which is greatly valuable for understanding the charge transfer process and achieving high PCE of the P SCs.
Abstract: Achieving efficient charge transfer at small frontier molecular orbital offsets between donor and acceptor is crucial for high performance polymer solar cells (PSCs). Here we synthesize a new wide band gap polymer donor, PTQ11, and a new low band gap acceptor, TPT10, and report a high power conversion efficiency (PCE) PSC (PCE = 16.32%) based on PTQ11-TPT10 with zero HOMO (the highest occupied molecular orbital) offset (ΔEHOMO(D-A)). TPT10 is a derivative of Y6 with monobromine instead of bifluorine substitution, and possesses upshifted lowest unoccupied molecular orbital energy level (ELUMO) of -3.99 eV and EHOMO of -5.52 eV than Y6. PTQ11 is a derivative of low cost polymer donor PTQ10 with methyl substituent on its quinoxaline unit and shows upshifted EHOMO of -5.52 eV, stronger molecular crystallization, and better hole transport capability in comparison with PTQ10. The PSC based on PTQ11-TPT10 shows highly efficient exciton dissociation and hole transfer, so that it demonstrates a high PCE of 16.32% with a higher Voc of 0.88 V, a large Jsc of 24.79 mA cm-2, and a high FF of 74.8%, despite the zero ΔEHOMO(D-A) value between donor PTQ11 and acceptor TPT10. The PCE of 16.32% is one of the highest efficiencies in the PSCs. The results prove the feasibility of efficient hole transfer and high efficiency for the PSCs with zero ΔEHOMO(D-A), which is highly valuable for understanding the charge transfer process and achieving high PCE of PSCs.

305 citations

Journal ArticleDOI
TL;DR: In this article, a ternary OSC system with a donor polymer (PM6) and two structurally similar non-fullerene acceptors (named ITCPTC and MeIC) was studied.
Abstract: Ternary blends have shown great potential to increase the power conversion efficiency (PCE) of organic solar cells (OSCs) In this work, we studied a ternary OSC system with a donor polymer (PM6) and two structurally similar non-fullerene acceptors (named ITCPTC and MeIC) Although these two small molecular acceptors (SMAs) exhibit similar absorption spectra, they introduce a surprising synergistic effect on tuning the domain size and crystallinity of the OSC blend More specifically, MeIC is a SMA with strong crystallinity, which results in excessive phase segregation and large domain size for the PM6:MeIC binary blend By adding a structurally similar and less crystalline SMA (ITCPTC) into the binary blend, the domain size and morphology of the blend are much improved without sacrificing the electron mobility of the blend As a result, the optimal blend ratio of PM6 : ITCPTC : MeIC (1 : 04 : 06) led to an impressive FF of 782% and PCE of 1413%, which are the highest values reported for ternary non-fullerene OSCs reported to date

244 citations

References
More filters
Journal ArticleDOI
15 Dec 1995-Science
TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Abstract: The carrier collection efficiency (ηc) and energy conversion efficiency (ηe) of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives. Composite films of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and fullerenes exhibit ηc of about 29 percent of electrons per photon and ηe of about 2.9 percent, efficiencies that are better by more than two orders of magnitude than those that have been achieved with devices made with pure MEH-PPV. The efficient charge separation results from photoinduced electron transfer from the MEH-PPV (as donor) to C60 (as acceptor); the high collection efficiency results from a bicontinuous network of internal donor-acceptor heterojunctions.

9,611 citations

Journal ArticleDOI
TL;DR: Polymer-based organic photovoltaic systems hold the promise for a cost-effective, lightweight solar energy conversion platform, which could benefit from simple solution processing of the active layer.
Abstract: Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Polymer-based organic photovoltaic systems hold the promise for a cost-effective, lightweight solar energy conversion platform, which could benefit from simple solution processing of the active layer. The function of such excitonic solar cells is based on photoinduced electron transfer from a donor to an acceptor. Fullerenes have become the ubiquitous acceptors because of their high electron affinity and ability to transport charge effectively. The most effective solar cells have been made from bicontinuous polymer–fullerene composites, or so-called bulk heterojunctions. The best solar cells currently achieve an efficiency of about 5 %, thus significant advances in the fundamental understanding of the complex interplay between the active layer morphology and electronic properties are required if this technology is to find viable application.

3,911 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes recent progress in the development of polymer solar cells and provides a synopsis of major achievements in the field over the past few years, while potential future developments and the applications of this technology are also briefly discussed.
Abstract: This Review summarizes recent progress in the development of polymer solar cells. It covers the scientific origins and basic properties of polymer solar cell technology, material requirements and device operation mechanisms, while also providing a synopsis of major achievements in the field over the past few years. Potential future developments and the applications of this technology are also briefly discussed.

3,832 citations

Journal ArticleDOI
TL;DR: Fluorene-Based Copolymers ContainingPhosphorescent Complexes and Carbazole-Based Conjugated Polymers R5.1.3.
Abstract: -phenylenevinylene)s L4. Fluorene-Based Conjugated Polymers L4.1. Fluorene-Based Copolymers ContainingElectron-Rich MoietiesM4.2. Fluorene-Based Copolymers ContainingElectron-Deficient MoietiesN4.3. Fluorene-Based Copolymers ContainingPhosphorescent ComplexesQ5. Carbazole-Based Conjugated Polymers R5.1. Poly(2,7-carbazole)-Based Polymers R5.2. Indolo[3,2-

3,686 citations

Journal ArticleDOI
TL;DR: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized.
Abstract: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized. Fullerene-free polymer solar cells (PSCs) based on the ITIC acceptor are demonstrated to exhibit power conversion effi ciencies of up to 6.8%, a record for fullerene-free PSCs.

3,048 citations