scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Signal processing of GPR data for road surveys

TL;DR: Results have proven the viability of the proposed signal processing method for data acquired on flexible pavements using GPR, provided recommendations on use of specific processing stages depending on survey requirements and quality of the raw dataset.
Abstract: Effective quality assurance and quality control inspections of new roads as well as assessment of remaining service-life of existing assets is taking priority nowadays. Within this context, use of ground penetrating radar (GPR) is well-established in the field, although standards for a correct management of datasets collected on roads are still missing. This paper reports a signal processing method for data acquired on flexible pavements using GPR. To demonstrate the viability of the method, a dataset collected on a real-life flexible pavement was used for processing purposes. An overview of the use of non-destructive testing (NDT) methods in the field, including GPR, is first given. A multi-stage method is then presented including: (i) raw signal correction; (ii) removal of lower frequency harmonics; (iii) removal of antenna ringing; (iv) signal gain; and (v) band-pass filtering. Use of special processing steps such as vertical resolution enhancement, migration and time-to-depth conversion are finally discussed. Key considerations about the effects of each step are given by way of comparison between processed and unprocessed radargrams. Results have proven the viability of the proposed method and provided recommendations on use of specific processing stages depending on survey requirements and quality of the raw dataset.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the potential of using ground penetrating radar (GPR) is demonstrated, while the main limitations of the method are discussed and some practical recommendations are made, and the methodologies, advantages and disadvantages along with up-to-date research results on GPR in infrastructure inspection are presented.
Abstract: The non-destructive testing and diagnosis of transport infrastructures is essential because of the need to protect these facilities for mobility, and for economic and social development. The effective and timely assessment of structural health conditions becomes crucial in order to assure the safety of the transportation system and time saver protocols, as well as to reduce excessive repair and maintenance costs. Ground penetrating radar (GPR) is one of the most recommended non-destructive methods for routine subsurface inspections. This paper focuses on the on-site use of GPR applied to transport infrastructures, namely pavements, railways, retaining walls, bridges and tunnels. The methodologies, advantages and disadvantages, along with up-to-date research results on GPR in infrastructure inspection are presented herein. Hence, through the review of the published literature, the potential of using GPR is demonstrated, while the main limitations of the method are discussed and some practical recommendations are made.

57 citations

Journal ArticleDOI
TL;DR: In this article, the integration of ground penetrating radar (GPR) and the Interferometric Synthetic Aperture Radar (InSAR) techniques for the monitoring of the rail-abutment transition area in railway bridges is reported.
Abstract: This paper reports the integration of the Ground Penetrating Radar (GPR) and the Interferometric Synthetic Aperture Radar (InSAR) techniques for the monitoring of the rail-abutment transition area in railway bridges. To this purpose, an experimental campaign was conducted on a rail truss bridge located in Puglia, Southern Italy. On one hand, GPR was used to obtain structural details of the subsurface (thickness of the ballasted layer, position of the sleepers, presence of clay/humidity spots) and to identify potential construction-related issues. Parallel to this, InSAR analyses were mainly addressed to monitor subsidence at the rail-abutment transition area. Outcomes of this investigation outlined presence of subsidence at both the areas of transition and have proven the proposed integrated approach as viable to achieve a more comprehensive assessment of the structural integrity of railway bridges.

44 citations

Journal ArticleDOI
TL;DR: In this article, the integration between satellite remote sensing and ground-based techniques is discussed and the potential of using interferometric synthetic aperture radar (InSAR) and high-frequency ground penetrating radar (GPR) techniques as self-standing and integrated survey methodologies is discussed.
Abstract: This study reviews research developments in non-destructive assessment of linear transport infrastructures. The main focus will be on the integration between satellite remote sensing and ground-based techniques. Specifically, the potential of using interferometric synthetic aperture radar (InSAR) and high-frequency ground penetrating radar (GPR) techniques as self-standing and integrated survey methodologies will be discussed. To this effect, an overview on data fusion techniques will be given. The last section of the paper reports recent results achieved by using both GPR systems and the permanent scatterers InSAR technique on a real-life railway.

44 citations

Journal ArticleDOI
TL;DR: An overview of the existing literature on the subject of the assessment and monitoring of tree roots and their interactions with the soil is provided, and a lack of available research-based outputs in the fields of tree root interconnectivity and soil interaction is highlighted.
Abstract: This paper provides an overview of the existing literature on the subject of the assessment and monitoring of tree roots and their interactions with the soil. An overview of tree root system architectures is given, and the main issues in terms of tree health and stability, as well as the impact of trees on the built environment, are discussed. An overview of the main destructive and non-destructive testing methods is presented, and a lack of available research-based outputs in the fields of tree root interconnectivity and soil interaction is highlighted. The effectiveness of non-destructive methods in these areas is demonstrated, in particular that of ground-penetrating radar. The paper references recent developments in estimating tree root mass density and health.

40 citations

Journal ArticleDOI
TL;DR: The proposed method develops the Mask Scoring R-CNN architecture by introducing a novel anchoring scheme that outperforms the other state-of-the-art methods in object detection and segmentation.
Abstract: Ground penetrating radar (GPR) has been widely used as a non-destructive technique to detect subsurface objects. Manual interpretation of GPR data is tedious and time-consuming. To address this challenge, an automatic method based on a deep instance segmentation framework is developed to detect and segment object signatures from GPR scans. The proposed method develops the Mask Scoring R-CNN (MS R-CNN) architecture by introducing a novel anchoring scheme. By analyzing the characteristics of the hyperbolic signatures of subsurface objects in GPR scans, a set of anchor shape ratios are optimized and selected to substitute the predefined and fixed aspect ratios in the MS R-CNN framework to improve the signature detection performance. In addition, transfer learning technique is adopted to obtain a pre-trained model to address the challenge of insufficient GPR dataset for model training. The detected and segmented signatures can then be further processed for target localization and characterization. GPR data of tree roots were collected in the field to validate the proposed methods. Despite the noisy background and varying signatures in the GPR scans, the proposed method demonstrated promising results in object detection and segmentation. Computational results show that the improved MS R-CNN outperforms the other state-of-the-art methods.

33 citations


Additional excerpts

  • ...GPR has been used in a variety of domains ranging from civil engineering [2]–[5], archaeology [6], [7] to agricultural activities [8]–[12]....

    [...]

References
More filters
Book
01 Jan 2009
TL;DR: The field of ground-penetrating radar (GPR) is a rapidly developing field that has seen tremendous progress over the past 15 years as discussed by the authors and has inspired new areas of research in academia.
Abstract: Ground-penetrating radar (GPR) is a rapidly developing field that has seen tremendous progress over the past 15 years. The development of GPR spans aspects of geophysical science, technology, and a wide range of scientific and engineering applications. It is the breadth of applications that has made GPR such a valuable tool in the geophysical consulting and geotechnical engineering industries, has lead to its rapid development, and inspired new areas of research in academia. The topic of GPR has gone from not even being mentioned in geophysical texts ten years ago to being the focus of hundreds of research papers and special issues of journals dedicated to the topic. The explosion of primary literature devoted to GPR technology, theory and applications, has lead to a strong demand for an up-to-date synthesis and overview of this rapidly developing field. Because there are specifics in the utilization of GPR for different applications, a review of the current state of development of the applications along with the fundamental theory is required. This book will provide sufficient detail to allow both practitioners and newcomers to the area of GPR to use it as a handbook and primary research reference. *Review of GPR theory and applications by leaders in the field *Up-to-date information and references *Effective handbook and primary research reference for both experienced practitioners and newcomers

1,044 citations


"Signal processing of GPR data for r..." refers background in this paper

  • ...It is based on the difference between the average amplitude of a signal in a specific time window and the maximum amplitude of the overall trace [62]....

    [...]

Journal ArticleDOI
TL;DR: A status report of ground-penalizing radar (GPR) highway applications is provided in this paper based on studies conducted in both Scandinavia and the USA, where ground-coupled and air-launched GPR systems together with a discussion of both signal processing and data interpretation techniques are discussed.

512 citations

Journal ArticleDOI
TL;DR: An improved approach to inverse modeling of ground-penetrating radar signals using a stepped-frequency continuous-wave radar combined with an off-ground monostatic transverse electromagnetic horn antenna, which shows remarkable agreement between the measured and modeled Green's functions.
Abstract: The possibility to estimate accurately the subsurface electric properties from ground-penetrating radar (GPR) signals using inverse modeling is obstructed by the appropriateness of the forward model describing the GPR subsurface system. In this paper, we improved the recently developed approach of Lambot et al. whose success relies on a stepped-frequency continuous-wave (SFCW) radar combined with an off-ground monostatic transverse electromagnetic horn antenna. This radar configuration enables realistic and efficient forward modeling. We included in the initial model: 1) the multiple reflections occurring between the antenna and the soil surface using a positive feedback loop in the antenna block diagram and 2) the frequency dependence of the electric properties using a local linear approximation of the Debye model. The model was validated in laboratory conditions on a tank filled with a two-layered sand subject to different water contents. Results showed remarkable agreement between the measured and modeled Green's functions. Model inversion for the dielectric permittivity further demonstrated the accuracy of the method. Inversion for the electric conductivity led to less satisfactory results. However, a sensitivity analysis demonstrated the good stability properties of the inverse solution and put forward the necessity to reduce the remaining clutter by a factor 10. This may partly be achieved through a better characterization of the antenna transfer functions and by performing measurements in an environment without close extraneous scatterers.

468 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the recent development of life-cycle maintenance and management planning for deteriorating civil infrastructure with emphasis on bridges using optimization techniques and considering simultaneously multiple and often competing criteria in terms of condition, safety and life cycle.
Abstract: Cost-competent maintenance and management of civil infrastructure requires balanced consideration of both the structure performance and the total cost accrued over the entire life-cycle. Most existing maintenance and management systems are developed on the basis of life-cycle cost minimization only. The single maintenance and management solution thus obtained, however, does not necessarily result in satisfactory long-term structure performance. Another concern is that the structure performance is usually described by the visual inspection-based structure condition states. The actual structure safety level, however, has not been explicitly or adequately considered in determining maintenance management decisions. This paper reviews the recent development of life-cycle maintenance and management planning for deteriorating civil infrastructure with emphasis on bridges using optimization techniques and considering simultaneously multiple and often competing criteria in terms of condition, safety and life-cycle...

406 citations


"Signal processing of GPR data for r..." refers background in this paper

  • ...This is a crucial piece of information to support administrators in planning maintenance activities as well as in balancing operational, safety and economic concerns [8,9]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the real and imaginary parts of the relative dielectric permittivity values of four silt and clay soils were measured at different densities and moisture contents ranging from oven dry material to the plastic state.

337 citations