scispace - formally typeset
Search or ask a question

Signal Recovery from Random Measurements Via Orthogonal Matching Pursuit: The Gaussian Case

TL;DR: In this paper, a greedy algorithm called Orthogonal Matching Pursuit (OMP) was proposed to recover a signal with m nonzero entries in dimension 1 given O(m n d) random linear measurements of that signal.
Abstract: This report demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(mln d) random linear measurements of that signal. This is a massive improvement over previous results, which require O(m2) measurements. The new results for OMP are comparable with recent results for another approach called Basis Pursuit (BP). In some settings, the OMP algorithm is faster and easier to implement, so it is an attractive alternative to BP for signal recovery problems.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This paper addresses the image representation problem in visual sensor networks by using a piecewise autoregressive model to construct a prediction of the sparse component from the corresponding dense component and using projection onto convex set (POCS) to reconstruct the sparse components.

46 citations

Journal ArticleDOI
TL;DR: The numerical method of bidirectional analytic ray tracing (BART) is employed to compute the polarized scattering from an electrically large target and CS is introduced into the reconstruction of the ISAR image under sparse sampling.
Abstract: Simulation of inverse synthetic aperture radar (ISAR) imaging of a space target and reconstruction under sparse sampling via compressed sensing (CS) are developed. The numerical bidirectional analytic ray tracing (BART) method is employed to compute the polarized scattering from an electrically large target. With multiorbit and multistation imaging modes, 2-D and 3-D ISAR images are acquired, leading to information retrieval of the space target, such as shape, structure, attitude, etc. CS is introduced into the reconstruction of ISAR images under sparse sampling. As an example, the models of the Aura satellite and the X-37B orbital test vehicle are presented for ISAR imaging and reconstruction.

46 citations

Journal ArticleDOI
TL;DR: A cross-correlated random field generator based on Bayesian compressive sampling (BCS) and Karhunen–Loeve (KL) expansion is proposed that performs reasonably well and is illustrated using numerical examples.

46 citations

Journal ArticleDOI
TL;DR: Results demonstrate that these polynomial chaos-based methods provide a Monte Carlo-like estimate of the collision probability, including a potential collision with debris in low Earth orbit.
Abstract: This paper describes the use of polynomial chaos expansions to approximate the probability of a collision between two satellites after at least one performs a translation maneuver. Polynomial chaos provides a computationally efficient means to generate an approximate solution to a stochastic differential equation without introducing any assumptions on the a posteriori distribution. The stochastic solution then allows for orbit state uncertainty propagation. For the maneuvering spacecraft in the presented scenarios, the polynomial chaos expansion is sparse, allowing for the use of compressive sampling methods to improve solution tractability. This paper first demonstrates the use of these techniques for possible intraformation collisions for the Magnetospheric Multi-Scale mission. The techniques are then applied to a potential collision with debris in low Earth orbit. Results demonstrate that these polynomial chaos-based methods provide a Monte Carlo-like estimate of the collision probability, including ad...

46 citations

Journal ArticleDOI
TL;DR: A new Bayesian evolutionary pursuit algorithm (BEPA) is proposed in this paper that decomposes the residual iteratively and estimates the maximum a posteriori of the main signal and the residual signals by solving a sequence of subproblems to achieve the approximate CS reconstruction of the signal.
Abstract: Compressive sensing (CS) is a theory that one may achieve an exact signal reconstruction from sufficient CS measurements taken from a sparse signal. However, in practical applications, the transform coefficients of SAR images usually have weak sparsity. Exactly reconstructing these images is very challenging. A new Bayesian evolutionary pursuit algorithm (BEPA) is proposed in this paper. A signal is represented as the sum of a main signal and some residual signals, and the generalized Gaussian distribution (GGD) is employed as the prior of the main signal and the residual signals. BEPA decomposes the residual iteratively and estimates the maximum a posteriori of the main signal and the residual signals by solving a sequence of subproblems to achieve the approximate CS reconstruction of the signal. Under the assumption of GGD with the parameter 0 <; p <; 1, the evolutionary algorithm (EA) is introduced to CS reconstruction for the first time. The better reconstruction performance can be achieved by searching the global optimal solutions of subproblems with EA. Numerical experiments demonstrate that the important features of SAR images (e.g., the point and line targets) can be well preserved by our algorithm, and the superior reconstruction performance can be obtained at the same time.

46 citations

References
More filters
Book
01 Jan 1983

34,729 citations

Book
D.L. Donoho1
01 Jan 2004
TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.
Abstract: Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measurements n can be dramatically smaller than the size m. Thus, certain natural classes of images with m pixels need only n=O(m1/4log5/2(m)) nonadaptive nonpixel samples for faithful recovery, as opposed to the usual m pixel samples. More specifically, suppose x has a sparse representation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g., curvelet, Gabor)-so the coefficients belong to an lscrp ball for 0

18,609 citations

Journal ArticleDOI
TL;DR: Basis Pursuit (BP) is a principle for decomposing a signal into an "optimal" superposition of dictionary elements, where optimal means having the smallest l1 norm of coefficients among all such decompositions.
Abstract: The time-frequency and time-scale communities have recently developed a large number of overcomplete waveform dictionaries --- stationary wavelets, wavelet packets, cosine packets, chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and several methods for decomposition have been proposed, including the method of frames (MOF), Matching pursuit (MP), and, for special dictionaries, the best orthogonal basis (BOB). Basis Pursuit (BP) is a principle for decomposing a signal into an "optimal" superposition of dictionary elements, where optimal means having the smallest l1 norm of coefficients among all such decompositions. We give examples exhibiting several advantages over MOF, MP, and BOB, including better sparsity and superresolution. BP has interesting relations to ideas in areas as diverse as ill-posed problems, in abstract harmonic analysis, total variation denoising, and multiscale edge denoising. BP in highly overcomplete dictionaries leads to large-scale optimization problems. With signals of length 8192 and a wavelet packet dictionary, one gets an equivalent linear program of size 8192 by 212,992. Such problems can be attacked successfully only because of recent advances in linear programming by interior-point methods. We obtain reasonable success with a primal-dual logarithmic barrier method and conjugate-gradient solver.

9,950 citations

Journal ArticleDOI
TL;DR: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions, chosen in order to best match the signal structures.
Abstract: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. Matching pursuits are general procedures to compute adaptive signal representations. With a dictionary of Gabor functions a matching pursuit defines an adaptive time-frequency transform. They derive a signal energy distribution in the time-frequency plane, which does not include interference terms, unlike Wigner and Cohen class distributions. A matching pursuit isolates the signal structures that are coherent with respect to a given dictionary. An application to pattern extraction from noisy signals is described. They compare a matching pursuit decomposition with a signal expansion over an optimized wavepacket orthonormal basis, selected with the algorithm of Coifman and Wickerhauser see (IEEE Trans. Informat. Theory, vol. 38, Mar. 1992). >

9,380 citations

Journal ArticleDOI
TL;DR: A publicly available algorithm that requires only the same order of magnitude of computational effort as ordinary least squares applied to the full set of covariates is described.
Abstract: The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to select a parsimonious set for the efficient prediction of a response variable. Least Angle Regression (LARS), a new model selection algorithm, is a useful and less greedy version of traditional forward selection methods. Three main properties are derived: (1) A simple modification of the LARS algorithm implements the Lasso, an attractive version of ordinary least squares that constrains the sum of the absolute regression coefficients; the LARS modification calculates all possible Lasso estimates for a given problem, using an order of magnitude less computer time than previous methods. (2) A different LARS modification efficiently implements Forward Stagewise linear regression, another promising new model selection method; this connection explains the similar numerical results previously observed for the Lasso and Stagewise, and helps us understand the properties of both methods, which are seen as constrained versions of the simpler LARS algorithm. (3) A simple approximation for the degrees of freedom of a LARS estimate is available, from which we derive a Cp estimate of prediction error; this allows a principled choice among the range of possible LARS estimates. LARS and its variants are computationally efficient: the paper describes a publicly available algorithm that requires only the same order of magnitude of computational effort as ordinary least squares applied to the full set of covariates.

7,828 citations