scispace - formally typeset
Search or ask a question

Signal Recovery from Random Measurements Via Orthogonal Matching Pursuit: The Gaussian Case

TL;DR: In this paper, a greedy algorithm called Orthogonal Matching Pursuit (OMP) was proposed to recover a signal with m nonzero entries in dimension 1 given O(m n d) random linear measurements of that signal.
Abstract: This report demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(mln d) random linear measurements of that signal. This is a massive improvement over previous results, which require O(m2) measurements. The new results for OMP are comparable with recent results for another approach called Basis Pursuit (BP). In some settings, the OMP algorithm is faster and easier to implement, so it is an attractive alternative to BP for signal recovery problems.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Non-convex optimization as discussed by the authors is a generalization of the convex optimization problem, and it has been widely used in machine learning applications, such as deep learning and reinforcement learning.
Abstract: A vast majority of machine learning algorithms train their models and perform inference by solving optimization problems. In order to capture the learning and prediction problems accurately, structural constraints such as sparsity or low rank are frequently imposed or else the objective itself is designed to be a non-convex function. This is especially true of algorithms that operate in high-dimensional spaces or that train non-linear models such as tensor models and deep networks. The freedom to express the learning problem as a non-convex optimization problem gives immense modeling power to the algorithm designer, but often such problems are NP-hard to solve. A popular workaround to this has been to relax non-convex problems to convex ones and use traditional methods to solve the (convex) relaxed optimization problems. However this approach may be lossy and nevertheless presents significant challenges for large scale optimization. On the other hand, direct approaches to non-convex optimization have met with resounding success in several domains and remain the methods of choice for the practitioner, as they frequently outperform relaxation-based techniques - popular heuristics include projected gradient descent and alternating minimization. However, these are often poorly understood in terms of their convergence and other properties. This monograph presents a selection of recent advances that bridge a long-standing gap in our understanding of these heuristics. The monograph will lead the reader through several widely used non-convex optimization techniques, as well as applications thereof. The goal of this monograph is to both, introduce the rich literature in this area, as well as equip the reader with the tools and techniques needed to analyze these simple procedures for non-convex problems.

283 citations

Journal ArticleDOI
TL;DR: The simultaneous orthogonal matching pursuit technique is used to solve the nonlocal weighted joint sparsity model (NLW-JSM) and the proposed classification algorithm performs better than the other sparsity-based algorithms and the classical support vector machine hyperspectral classifier.
Abstract: As a powerful and promising statistical signal modeling technique, sparse representation has been widely used in various image processing and analysis fields. For hyperspectral image classification, previous studies have shown the effectiveness of the sparsity-based classification methods. In this paper, we propose a nonlocal weighted joint sparse representation classification (NLW-JSRC) method to improve the hyperspectral image classification result. In the joint sparsity model (JSM), different weights are utilized for different neighboring pixels around the central test pixel. The weight of one specific neighboring pixel is determined by the structural similarity between the neighboring pixel and the central test pixel, which is referred to as a nonlocal weighting scheme. In this paper, the simultaneous orthogonal matching pursuit technique is used to solve the nonlocal weighted joint sparsity model (NLW-JSM). The proposed classification algorithm was tested on three hyperspectral images. The experimental results suggest that the proposed algorithm performs better than the other sparsity-based algorithms and the classical support vector machine hyperspectral classifier.

283 citations

Journal ArticleDOI
TL;DR: This article explores how to design optimal sensor locations for signal reconstruction in a framework that scales to arbitrarily large problems, leveraging modern techniques in machine learning and sparse sampling.
Abstract: Optimal sensor and actuator placement is an important unsolved problem in control theory. Nearly every downstream control decision is affected by these sensor and actuator locations, but determining optimal locations amounts to an intractable brute-force search among the combinatorial possibilities. Indeed, there are (np) = n!/((n-p)!p!) possible choices of p point sensors out of an n-dimensional state x. Determining optimal sensor and actuator placement in general, even for linear feedback control, is an open challenge. Instead, sensor and actuator locations are routinely chosen according to heuristics and intuition. For moderate-sized search spaces, the sensor placement problem has well-known model-based solutions using optimal experiment design [1], [2], and information theoretic and Bayesian criteria [3]-[7]. As discussed in "Summary," this article explores how to design optimal sensor locations for signal reconstruction in a framework that scales to arbitrarily large problems, leveraging modern techniques in machine learning and sparse sampling. Reducing the number of sensors through principled selection may be critically enabling when sensors are costly, and it may also enable faster state estimation for low-latency, high-bandwidth control.

279 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide essential knowledge and useful tips and tricks that wireless communication researchers need to know when designing CS-based wireless systems, including basic setup, sparse recovery algorithm, and performance guarantee.
Abstract: As a paradigm to recover the sparse signal from a small set of linear measurements, compressed sensing (CS) has stimulated a great deal of interest in recent years. In order to apply the CS techniques to wireless communication systems, there are a number of things to know and also several issues to be considered. However, it is not easy to grasp simple and easy answers to the issues raised while carrying out research on CS. The main purpose of this paper is to provide essential knowledge and useful tips and tricks that wireless communication researchers need to know when designing CS-based wireless systems. First, we present an overview of the CS technique, including basic setup, sparse recovery algorithm, and performance guarantee. Then, we describe three distinct subproblems of CS, viz., sparse estimation, support identification, and sparse detection, with various wireless communication applications. We also address main issues encountered in the design of CS-based wireless communication systems. These include potentials and limitations of CS techniques, useful tips that one should be aware of, subtle points that one should pay attention to, and some prior knowledge to achieve better performance. Our hope is that this paper will be a useful guide for wireless communication researchers and even non-experts to get the gist of CS techniques.

272 citations

Posted Content
TL;DR: In this article, an autoencoder with linear activation function is proposed, where in hidden layers only the k highest activities are kept, which achieves better classification results than denoising autoencoders, networks trained with dropout, and RBMs.
Abstract: Recently, it has been observed that when representations are learnt in a way that encourages sparsity, improved performance is obtained on classification tasks. These methods involve combinations of activation functions, sampling steps and different kinds of penalties. To investigate the effectiveness of sparsity by itself, we propose the k-sparse autoencoder, which is an autoencoder with linear activation function, where in hidden layers only the k highest activities are kept. When applied to the MNIST and NORB datasets, we find that this method achieves better classification results than denoising autoencoders, networks trained with dropout, and RBMs. k-sparse autoencoders are simple to train and the encoding stage is very fast, making them well-suited to large problem sizes, where conventional sparse coding algorithms cannot be applied.

271 citations

References
More filters
Book
01 Jan 1983

34,729 citations

Book
D.L. Donoho1
01 Jan 2004
TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.
Abstract: Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measurements n can be dramatically smaller than the size m. Thus, certain natural classes of images with m pixels need only n=O(m1/4log5/2(m)) nonadaptive nonpixel samples for faithful recovery, as opposed to the usual m pixel samples. More specifically, suppose x has a sparse representation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g., curvelet, Gabor)-so the coefficients belong to an lscrp ball for 0

18,609 citations

Journal ArticleDOI
TL;DR: Basis Pursuit (BP) is a principle for decomposing a signal into an "optimal" superposition of dictionary elements, where optimal means having the smallest l1 norm of coefficients among all such decompositions.
Abstract: The time-frequency and time-scale communities have recently developed a large number of overcomplete waveform dictionaries --- stationary wavelets, wavelet packets, cosine packets, chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and several methods for decomposition have been proposed, including the method of frames (MOF), Matching pursuit (MP), and, for special dictionaries, the best orthogonal basis (BOB). Basis Pursuit (BP) is a principle for decomposing a signal into an "optimal" superposition of dictionary elements, where optimal means having the smallest l1 norm of coefficients among all such decompositions. We give examples exhibiting several advantages over MOF, MP, and BOB, including better sparsity and superresolution. BP has interesting relations to ideas in areas as diverse as ill-posed problems, in abstract harmonic analysis, total variation denoising, and multiscale edge denoising. BP in highly overcomplete dictionaries leads to large-scale optimization problems. With signals of length 8192 and a wavelet packet dictionary, one gets an equivalent linear program of size 8192 by 212,992. Such problems can be attacked successfully only because of recent advances in linear programming by interior-point methods. We obtain reasonable success with a primal-dual logarithmic barrier method and conjugate-gradient solver.

9,950 citations

Journal ArticleDOI
TL;DR: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions, chosen in order to best match the signal structures.
Abstract: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. Matching pursuits are general procedures to compute adaptive signal representations. With a dictionary of Gabor functions a matching pursuit defines an adaptive time-frequency transform. They derive a signal energy distribution in the time-frequency plane, which does not include interference terms, unlike Wigner and Cohen class distributions. A matching pursuit isolates the signal structures that are coherent with respect to a given dictionary. An application to pattern extraction from noisy signals is described. They compare a matching pursuit decomposition with a signal expansion over an optimized wavepacket orthonormal basis, selected with the algorithm of Coifman and Wickerhauser see (IEEE Trans. Informat. Theory, vol. 38, Mar. 1992). >

9,380 citations

Journal ArticleDOI
TL;DR: A publicly available algorithm that requires only the same order of magnitude of computational effort as ordinary least squares applied to the full set of covariates is described.
Abstract: The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to select a parsimonious set for the efficient prediction of a response variable. Least Angle Regression (LARS), a new model selection algorithm, is a useful and less greedy version of traditional forward selection methods. Three main properties are derived: (1) A simple modification of the LARS algorithm implements the Lasso, an attractive version of ordinary least squares that constrains the sum of the absolute regression coefficients; the LARS modification calculates all possible Lasso estimates for a given problem, using an order of magnitude less computer time than previous methods. (2) A different LARS modification efficiently implements Forward Stagewise linear regression, another promising new model selection method; this connection explains the similar numerical results previously observed for the Lasso and Stagewise, and helps us understand the properties of both methods, which are seen as constrained versions of the simpler LARS algorithm. (3) A simple approximation for the degrees of freedom of a LARS estimate is available, from which we derive a Cp estimate of prediction error; this allows a principled choice among the range of possible LARS estimates. LARS and its variants are computationally efficient: the paper describes a publicly available algorithm that requires only the same order of magnitude of computational effort as ordinary least squares applied to the full set of covariates.

7,828 citations