scispace - formally typeset
Search or ask a question

Signal Recovery from Random Measurements Via Orthogonal Matching Pursuit: The Gaussian Case

TL;DR: In this paper, a greedy algorithm called Orthogonal Matching Pursuit (OMP) was proposed to recover a signal with m nonzero entries in dimension 1 given O(m n d) random linear measurements of that signal.
Abstract: This report demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(mln d) random linear measurements of that signal. This is a massive improvement over previous results, which require O(m2) measurements. The new results for OMP are comparable with recent results for another approach called Basis Pursuit (BP). In some settings, the OMP algorithm is faster and easier to implement, so it is an attractive alternative to BP for signal recovery problems.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A survey of some recent work on sparse representation, learning and modeling with emphasis on visual recognition, and the applications of sparse theory to various visual recognition tasks are introduced.

146 citations

Journal ArticleDOI
TL;DR: It is shown that parity-check matrices of “ good” channel codes can be used as provably “good” measurement matrices under basis pursuit and the first deterministic construction of compressed sensing measurementMatrices with an order-optimal number of rows using high-girth low-density parity- check codes constructed by Gallager is provided.
Abstract: We present a mathematical connection between channel coding and compressed sensing. In particular, we link, on the one hand, channel coding linear programming decoding (CC-LPD), which is a well-known relaxation of maximum-likelihood channel decoding for binary linear codes, and, on the other hand, compressed sensing linear programming decoding (CS-LPD), also known as basis pursuit, which is a widely used linear programming relaxation for the problem of finding the sparsest solution of an underdetermined system of linear equations. More specifically, we establish a tight connection between CS-LPD based on a zero-one measurement matrix over the reals and CC-LPD of the binary linear channel code that is obtained by viewing this measurement matrix as a binary parity-check matrix. This connection allows the translation of performance guarantees from one setup to the other. The main message of this paper is that parity-check matrices of “good” channel codes can be used as provably “good” measurement matrices under basis pursuit. In particular, we provide the first deterministic construction of compressed sensing measurement matrices with an order-optimal number of rows using high-girth low-density parity-check codes constructed by Gallager.

146 citations

Journal ArticleDOI
TL;DR: The sparse microwave imaging introduces the sparse signal processing theory to radar imaging to obtain new theory, new system and new methodology of microwave imaging to achieve benefits in several aspects, including improvement of image quality, reduction of data amount for sparse scene and enhancement of system performance.
Abstract: This paper provides principles and applications of the sparse microwave imaging theory and technology. Synthetic aperture radar (SAR) is an important method of modern remote sensing. During decades microwave imaging technology has achieved remarkable progress in the system performance of microwave imaging technology, and at the same time encountered increasing complexity in system implementation. The sparse microwave imaging introduces the sparse signal processing theory to radar imaging to obtain new theory, new system and new methodology of microwave imaging. Based on classical SAR imaging model and fundamental theories of sparse signal processing, we can derive the model of sparse microwave imaging, which is a sparse measurement and recovery problem and can be solved with various algorithms. There exist several fundamental points that must be considered in the efforts of applying sparse signal processing to radar imaging, including sparse representation, measurement matrix construction, unambiguity reconstruction and performance evaluation. Based on these considerations, the sparse signal processing could be successfully applied to radar imaging, and achieve benefits in several aspects, including improvement of image quality, reduction of data amount for sparse scene and enhancement of system performance. The sparse signal processing has also been applied in several specific radar imaging applications.

146 citations

Proceedings ArticleDOI
06 Jun 2018
TL;DR: In this paper, a large-scale dataset is proposed to predict perceptual image error like human observers, and a deep learning model is trained using pairwise learning to predict the preference of one distorted image over another.
Abstract: The ability to estimate the perceptual error between images is an important problem in computer vision with many applications. Although it has been studied extensively, however, no method currently exists that can robustly predict visual differences like humans. Some previous approaches used hand-coded models, but they fail to model the complexity of the human visual system. Others used machine learning to train models on human-labeled datasets, but creating large, high-quality datasets is difficult because people are unable to assign consistent error labels to distorted images. In this paper, we present a new learning-based method that is the first to predict perceptual image error like human observers. Since it is much easier for people to compare two given images and identify the one more similar to a reference than to assign quality scores to each, we propose a new, large-scale dataset labeled with the probability that humans will prefer one image over another. We then train a deep-learning model using a novel, pairwise-learning framework to predict the preference of one distorted image over the other. Our key observation is that our trained network can then be used separately with only one distorted image and a reference to predict its perceptual error, without ever being trained on explicit human perceptual-error labels. The perceptual error estimated by our new metric, PieAPP, is well-correlated with human opinion. Furthermore, it significantly outperforms existing algorithms, beating the state-of-the-art by almost 3A— on our test set in terms of binary error rate, while also generalizing to new kinds of distortions, unlike previous learning-based methods.

145 citations

Journal ArticleDOI
TL;DR: A modern overview of recent advances in tensor completion algorithms from the perspective of big data analytics characterized by diverse variety, large volume, and high velocity is provided.
Abstract: Tensor completion is a problem of filling the missing or unobserved entries of partially observed tensors. Due to the multidimensional character of tensors in describing complex datasets, tensor completion algorithms and their applications have received wide attention and achievement in areas like data mining, computer vision, signal processing, and neuroscience. In this survey, we provide a modern overview of recent advances in tensor completion algorithms from the perspective of big data analytics characterized by diverse variety, large volume, and high velocity. We characterize these advances from the following four perspectives: general tensor completion algorithms, tensor completion with auxiliary information (variety), scalable tensor completion algorithms (volume), and dynamic tensor completion algorithms (velocity). Further, we identify several tensor completion applications on real-world data-driven problems and present some common experimental frameworks popularized in the literature along with several available software repositories. Our goal is to summarize these popular methods and introduce them to researchers and practitioners for promoting future research and applications. We conclude with a discussion of key challenges and promising research directions in this community for future exploration.

145 citations

References
More filters
Book
01 Jan 1983

34,729 citations

Book
D.L. Donoho1
01 Jan 2004
TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.
Abstract: Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measurements n can be dramatically smaller than the size m. Thus, certain natural classes of images with m pixels need only n=O(m1/4log5/2(m)) nonadaptive nonpixel samples for faithful recovery, as opposed to the usual m pixel samples. More specifically, suppose x has a sparse representation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g., curvelet, Gabor)-so the coefficients belong to an lscrp ball for 0

18,609 citations

Journal ArticleDOI
TL;DR: Basis Pursuit (BP) is a principle for decomposing a signal into an "optimal" superposition of dictionary elements, where optimal means having the smallest l1 norm of coefficients among all such decompositions.
Abstract: The time-frequency and time-scale communities have recently developed a large number of overcomplete waveform dictionaries --- stationary wavelets, wavelet packets, cosine packets, chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and several methods for decomposition have been proposed, including the method of frames (MOF), Matching pursuit (MP), and, for special dictionaries, the best orthogonal basis (BOB). Basis Pursuit (BP) is a principle for decomposing a signal into an "optimal" superposition of dictionary elements, where optimal means having the smallest l1 norm of coefficients among all such decompositions. We give examples exhibiting several advantages over MOF, MP, and BOB, including better sparsity and superresolution. BP has interesting relations to ideas in areas as diverse as ill-posed problems, in abstract harmonic analysis, total variation denoising, and multiscale edge denoising. BP in highly overcomplete dictionaries leads to large-scale optimization problems. With signals of length 8192 and a wavelet packet dictionary, one gets an equivalent linear program of size 8192 by 212,992. Such problems can be attacked successfully only because of recent advances in linear programming by interior-point methods. We obtain reasonable success with a primal-dual logarithmic barrier method and conjugate-gradient solver.

9,950 citations

Journal ArticleDOI
TL;DR: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions, chosen in order to best match the signal structures.
Abstract: The authors introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. Matching pursuits are general procedures to compute adaptive signal representations. With a dictionary of Gabor functions a matching pursuit defines an adaptive time-frequency transform. They derive a signal energy distribution in the time-frequency plane, which does not include interference terms, unlike Wigner and Cohen class distributions. A matching pursuit isolates the signal structures that are coherent with respect to a given dictionary. An application to pattern extraction from noisy signals is described. They compare a matching pursuit decomposition with a signal expansion over an optimized wavepacket orthonormal basis, selected with the algorithm of Coifman and Wickerhauser see (IEEE Trans. Informat. Theory, vol. 38, Mar. 1992). >

9,380 citations

Journal ArticleDOI
TL;DR: A publicly available algorithm that requires only the same order of magnitude of computational effort as ordinary least squares applied to the full set of covariates is described.
Abstract: The purpose of model selection algorithms such as All Subsets, Forward Selection and Backward Elimination is to choose a linear model on the basis of the same set of data to which the model will be applied. Typically we have available a large collection of possible covariates from which we hope to select a parsimonious set for the efficient prediction of a response variable. Least Angle Regression (LARS), a new model selection algorithm, is a useful and less greedy version of traditional forward selection methods. Three main properties are derived: (1) A simple modification of the LARS algorithm implements the Lasso, an attractive version of ordinary least squares that constrains the sum of the absolute regression coefficients; the LARS modification calculates all possible Lasso estimates for a given problem, using an order of magnitude less computer time than previous methods. (2) A different LARS modification efficiently implements Forward Stagewise linear regression, another promising new model selection method; this connection explains the similar numerical results previously observed for the Lasso and Stagewise, and helps us understand the properties of both methods, which are seen as constrained versions of the simpler LARS algorithm. (3) A simple approximation for the degrees of freedom of a LARS estimate is available, from which we derive a Cp estimate of prediction error; this allows a principled choice among the range of possible LARS estimates. LARS and its variants are computationally efficient: the paper describes a publicly available algorithm that requires only the same order of magnitude of computational effort as ordinary least squares applied to the full set of covariates.

7,828 citations